Synthesis 2015; 47(17): 2635-2640
DOI: 10.1055/s-0034-1380753
paper
© Georg Thieme Verlag Stuttgart · New York

Regioselective Synthesis of α-Perfluoroalkylated Ketals via Double Michael Addition of Alcohols to Activated Alkynes

Ella Ndong
a   Laboratoire d’Infectiologie et Santé Publique (UMR 1282), Equipe Recherche et Innovation en Chimie Médicinale, Faculté des Sciences, Parc de Grandmont, 37200 Tours, France   Email: mohamed.abarbri@univ-tours.fr
,
Guy Judicael
a   Laboratoire d’Infectiologie et Santé Publique (UMR 1282), Equipe Recherche et Innovation en Chimie Médicinale, Faculté des Sciences, Parc de Grandmont, 37200 Tours, France   Email: mohamed.abarbri@univ-tours.fr
,
Jean Luc Parrain
b   Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France
,
Mohamed Abarbri*
a   Laboratoire d’Infectiologie et Santé Publique (UMR 1282), Equipe Recherche et Innovation en Chimie Médicinale, Faculté des Sciences, Parc de Grandmont, 37200 Tours, France   Email: mohamed.abarbri@univ-tours.fr
› Author Affiliations
Further Information

Publication History

Received: 11 February 2015

Accepted after revision: 16 April 2015

Publication Date:
17 June 2015 (online)


Abstract

An efficient method was developed for the synthesis of alkyl 3,3-dialkoxy-3-(perfluoroalkyl)propanoates from ethyl 3-(perfluoroalkyl)propynoates and alcohols using a base-catalyzed double Michael addition reaction (which was accompanied by transesterification in the case of MeOH, EtOH, PrOH, and BuOH). This method provides easy access to the product α-perfluoroalkyl ketals with reasonable to good yields with total regioselectivity. This procedure does not require the use of expensive supplementary additives for the preparation of α-perfluoroalkyl ketals which are very sensitive to acidic conditions.

Supporting Information

 
  • References

    • 1a For an exhaustive review, see: Alonso F, Beletskaya IP, Yus M. Chem. Rev. 2004; 104: 3079
    • 1b Kirk-Othmer Encyclopedia of Chemical Technology . 4th ed., Vol. 1; Kroschwitz JI, Howe-Grant M. John Wiley & Sons; New York: 1991: 221
    • 2a Castro CE, Stephens RD. J. Org. Chem. 1963; 28: 2163
    • 2b Castro CE, Gaughan EJ, Owsley DC. J. Org. Chem. 1966; 31: 4071
    • 2c Castro CE, Havlin R, Honwad VK, Malte A, Mojé S. J. Am. Chem. Soc. 1969; 91: 6464
    • 2d Houpis IN, Choi WB, Reider PJ, Molina A, Churchill H, Lynch J, Volante RP. Tetrahedron Lett. 1994; 35: 9355
    • 2e Chowdhury C, Chaudhuri G, Guha S, Mukherjee AK, Kundu NG. J. Org. Chem. 1998; 63: 1863
    • 2f Bates CG, Saejueng P, Murphy JM, Venkataraman D. Org. Lett. 2002; 4: 4727
  • 3 Kondo M, Kochi T, Kakiuchi F. J. Am. Chem. Soc. 2011; 133: 32
    • 4a Murata T, Mizobe Y, Gao H, Ishii Y, Wakabayashi T, Nakanao F, Tanase T, Yano S, Hidai M, Echizen I, Nanikawa H, Motomura S. J. Am. Chem. Soc. 1994; 116: 3398
    • 4b Avshu A, O’Sullivan RD, Parkins AW, Alcock NW, Countryman RM. J. Chem. Soc., Dalton Trans. 1983; 1619
  • 5 Kataoka Y, Matsumoto O, Tani K. Chem. Lett. 1996; 727
    • 6a Messerle BA, Vuong KQ. Organometallics 2007; 26: 3031
    • 6b Messerle BA, Vuong KQ. Pure Appl. Chem. 2006; 78: 385
  • 7 Kataoka Y, Matsumoto O, Tani K. Organometallics 1996; 15: 5246
    • 8a Ketcham JM, Biannic B, Aponick A. Chem. Commun. 2013; 49: 4157
    • 8b Belting V, Krause N. Org. Lett. 2006; 8: 4489
    • 8c Diéguez-Vazquez A, Tzschucke CC, Crecente-Campo J, McGrath S, Ley SV. Eur. J. Org. Chem. 2009; 1698
    • 8d Schulz M, Teles JH. WO 9721648, 1997 ; Chem. Abstr. 1997, 127, 121499.
    • 8e Teles JH, Brode S, Chabanas M. Angew. Chem. Int. Ed. 1998; 37: 1415
    • 8f Fukuda Y, Utimoto K. J. Org. Chem. 1991; 56: 3729
    • 8g Fukuda Y, Utimoto K. JP 04095039, 1990 ; Chem. Abstr. 1992, 117, 191330.
  • 9 Bertz SH, Dabbagh G, Cotte P. J. Org. Chem. 1982; 47: 2216
  • 10 Corma A, Ruis VR, Leyva-Pérez A, Sabater MJ. Adv. Synth. Catal. 2010; 352: 1701
    • 11a Reeves JT, Fandrick DR, Tan Z, Song JJ, Rodriguez S, Qu B, Kim S, Niemeier O, Li Z, Byrne D, Campbell S, Chitroda A, DeCroos P, Fachinger T, Fuchs V, Gonnella NC, Grinberg N, Haddad N, Jäger B, Lee H, Lorenz JC, Ma S, Narayanan BA, Nummy LJ, Premasiri A, Roschangar F, Sarvestani M, Shen S, Spinelli E, Sun X, Varsolona RJ, Yee N, Brenner M, Senanayake CH. J. Org. Chem. 2013; 78: 3616
    • 11b Bégué JP, Bonnet-Delpon D. Tetrahedron 1991; 47: 3207
    • 12a Simmons HE. Jr, Wiley DW. J. Am. Chem. Soc. 1960; 82: 2288
    • 12b Aubert C, Begue JP, Charpentier-Morize M, Nee G, Langlois B. J. Fluorine Chem. 1989; 44: 377
    • 12c Barbasiewicz M, Makosza M. Org. Lett. 2006; 8: 3745
  • 13 Wulff G, Wolf G. Chem. Ber. 1986; 119: 1876
  • 14 Szabo D, Bonto A.-M, Koevesdi I, Goemoery A, Rabai J. J. Fluorine Chem. 2005; 126: 639
  • 15 Yang Z.-Y. J. Org. Chem. 1995; 60: 5696
    • 16a Pavlov AM, Chizhov DL, Charushin VN. Russ. J. Org. Chem. 2005; 41: 1449
    • 16b Yamanaka H, Tamura K, Funabiki K, Fukunishi K, Ishihara T. J. Fluorine Chem. 1992; 57: 177
    • 16c Zuczek C, Gérardin C, Rocca S, Thiébaut S, Selve C. J. Fluorine Chem. 1999; 99: 41
    • 16d Shcherbakova I, Huang G, Geoffroy OJ, Nair SK, Swierczek K, Balandrin MF, Fox J, Heaton WL, Conklin RL. Bioorg. Med. Chem. Lett. 2005; 15: 2537
    • 17a Smart BE. Chem. Rev. 1996; 96: 1555
    • 17b Banks RE, Smart BE, Tatlow JC. Organofluorine Chemistry: Principle and Commercial Applications . Plenum Press; New York: 1994
    • 18a Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 18b Müller K, Faeh C, Diederich F. Science (Washington, D.C.) 2007; 317: 1881
  • 19 Chong Q, Xin X, Wang C, Wu F, Wang H, Shi J.-C, Wan B. J. Org. Chem. 2014; 79: 2105