Eur J Pediatr Surg 2014; 24(03): 237-245
DOI: 10.1055/s-0034-1382260
Review
Georg Thieme Verlag KG Stuttgart · New York

In Utero Stem Cell and Gene Therapy: Current Status and Future Perspectives

Stavros P. Loukogeorgakis
1   Surgery Unit, University College London Institute of Child Health, London, United Kingdom
,
Alan W. Flake
2   The Children's Hospital of Philadelphia, and The University of Pennsylvania School of Medicine - The Center for Fetal Diagnosis and Treatment, Philadelphia, Pennsylvania, United States
› Author Affiliations
Further Information

Publication History

05 May 2014

07 May 2014

Publication Date:
19 June 2014 (online)

Abstract

Advances in prenatal diagnosis have led to the development of fetal therapies for congenital disorders. Although in utero surgical intervention has been used successfully for correction of anatomical defects that cause fetal demise or long-term disability, its clinical indications remain limited. In contrast, prenatal stem cell and gene therapy might have tremendous potential to treat multiple inherited disorders, and could dramatically expand the use of fetal intervention to a wide range of anticipated pediatric and adult diseases. Despite encouraging results from studies in animal models of disease, the clinical utility of such therapies has been restricted by poor efficacy and concerns about safety. The aim of this review is to summarize experimental progress toward clinical application of in utero stem cell transplantation and gene transfer for the treatment of congenital disease.

 
  • References

  • 1 Vrecenak JD, Flake AW. Fetal surgical intervention: progress and perspectives. Pediatr Surg Int 2013; 29 (5) 407-417
  • 2 McCandless SE, Brunger JW, Cassidy SB. The burden of genetic disease on inpatient care in a children's hospital. Am J Hum Genet 2004; 74 (1) 121-127
  • 3 Vrecenak JD, Flake AW. In utero hematopoietic cell transplantation—recent progress and the potential for clinical application. Cytotherapy 2013; 15 (5) 525-535
  • 4 Mehta V, Abi Nader K, Waddington S, David AL. Organ targeted prenatal gene therapy—how far are we?. Prenat Diagn 2011; 31 (7) 720-734
  • 5 Pearson EG, Flake AW. Stem cell and genetic therapies for the fetus. Semin Pediatr Surg 2013; 22 (1) 56-61
  • 6 Weissman IL, Shizuru JA. The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases. Blood 2008; 112 (9) 3543-3553
  • 7 Michlitsch JG, Walters MC. Recent advances in bone marrow transplantation in hemoglobinopathies. Curr Mol Med 2008; 8 (7) 675-689
  • 8 Billingham RE, Brent L, Medawar PB. Actively acquired tolerance of foreign cells. Nature 1953; 172 (4379) 603-606
  • 9 Takahama Y. Journey through the thymus: stromal guides for T-cell development and selection. Nat Rev Immunol 2006; 6 (2) 127-135
  • 10 Josefowicz SZ, Lu LF, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 2012; 30: 531-564
  • 11 Nijagal A, Derderian C, Le T , et al. Direct and indirect antigen presentation lead to deletion of donor-specific T cells after in utero hematopoietic cell transplantation in mice. Blood 2013; 121 (22) 4595-4602
  • 12 van Dijk BA, Boomsma DI, de Man AJ. Blood group chimerism in human multiple births is not rare. Am J Med Genet 1996; 61 (3) 264-268
  • 13 Tavian M, Péault B. Embryonic development of the human hematopoietic system. Int J Dev Biol 2005; 49 (2-3) 243-250
  • 14 Kim HB, Shaaban AF, Yang EY, Liechty KW, Flake AW. Microchimerism and tolerance after in utero bone marrow transplantation in mice. J Surg Res 1998; 77 (1) 1-5
  • 15 Lovell KL, Kraemer SA, Leipprandt JR , et al. In utero hematopoietic stem cell transplantation: a caprine model for prenatal therapy in inherited metabolic diseases. Fetal Diagn Ther 2001; 16 (1) 13-17
  • 16 Peranteau WH, Heaton TE, Gu YC , et al. Haploidentical in utero hematopoietic cell transplantation improves phenotype and can induce tolerance for postnatal same-donor transplants in the canine leukocyte adhesion deficiency model. Biol Blood Marrow Transplant 2009; 15 (3) 293-305
  • 17 Harrison MR, Slotnick RN, Crombleholme TM, Golbus MS, Tarantal AF, Zanjani ED. In-utero transplantation of fetal liver haemopoietic stem cells in monkeys. Lancet 1989; 2 (8677) 1425-1427
  • 18 Fleischman RA, Mintz B. Prevention of genetic anemias in mice by microinjection of normal hematopoietic stem cells into the fetal placenta. Proc Natl Acad Sci U S A 1979; 76 (11) 5736-5740
  • 19 Blazar BR, Taylor PA, Vallera DA. In utero transfer of adult bone marrow cells into recipients with severe combined immunodeficiency disorder yields lymphoid progeny with T- and B-cell functional capabilities. Blood 1995; 86 (11) 4353-4366
  • 20 Peranteau WH, Endo M, Adibe OO, Flake AW. Evidence for an immune barrier after in utero hematopoietic-cell transplantation. Blood 2007; 109 (3) 1331-1333
  • 21 Ashizuka S, Peranteau WH, Hayashi S, Flake AW. Busulfan-conditioned bone marrow transplantation results in high-level allogeneic chimerism in mice made tolerant by in utero hematopoietic cell transplantation. Exp Hematol 2006; 34 (3) 359-368
  • 22 Carrier E, Lee TH, Busch MP, Cowan MJ. Induction of tolerance in nondefective mice after in utero transplantation of major histocompatibility complex-mismatched fetal hematopoietic stem cells. Blood 1995; 86 (12) 4681-4690
  • 23 Flake AW, Roncarolo MG, Puck JM , et al. Treatment of X-linked severe combined immunodeficiency by in utero transplantation of paternal bone marrow. N Engl J Med 1996; 335 (24) 1806-1810
  • 24 Kim HB, Shaaban AF, Milner R, Fichter C, Flake AW. In utero bone marrow transplantation induces donor-specific tolerance by a combination of clonal deletion and clonal anergy. J Pediatr Surg 1999; 34 (5) 726-729 , discussion 729–730
  • 25 Merianos DJ, Tiblad E, Santore MT , et al. Maternal alloantibodies induce a postnatal immune response that limits engraftment following in utero hematopoietic cell transplantation in mice. J Clin Invest 2009; 119 (9) 2590-2600
  • 26 Nijagal A, Wegorzewska M, Jarvis E, Le T, Tang Q, MacKenzie TC. Maternal T cells limit engraftment after in utero hematopoietic cell transplantation in mice. J Clin Invest 2011; 121 (2) 582-592
  • 27 Flake AW, Harrison MR, Adzick NS, Zanjani ED. Transplantation of fetal hematopoietic stem cells in utero: the creation of hematopoietic chimeras. Science 1986; 233 (4765) 776-778
  • 28 Lee PW, Cina RA, Randolph MA , et al. Stable multilineage chimerism across full MHC barriers without graft-versus-host disease following in utero bone marrow transplantation in pigs. Exp Hematol 2005; 33 (3) 371-379
  • 29 Ren G, Chen X, Dong F , et al. Concise review: mesenchymal stem cells and translational medicine: emerging issues. Stem Cells Transl Med 2012; 1 (1) 51-58
  • 30 Liechty KW, MacKenzie TC, Shaaban AF , et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med 2000; 6 (11) 1282-1286
  • 31 Chan J, Waddington SN, O'Donoghue K , et al. Widespread distribution and muscle differentiation of human fetal mesenchymal stem cells after intrauterine transplantation in dystrophic mdx mouse. Stem Cells 2007; 25 (4) 875-884
  • 32 Guillot PV, Abass O, Bassett JH , et al. Intrauterine transplantation of human fetal mesenchymal stem cells from first-trimester blood repairs bone and reduces fractures in osteogenesis imperfecta mice. Blood 2008; 111 (3) 1717-1725
  • 33 Westgren M, Ringdén O, Bartmann P , et al. Prenatal T-cell reconstitution after in utero transplantation with fetal liver cells in a patient with X-linked severe combined immunodeficiency. Am J Obstet Gynecol 2002; 187 (2) 475-482
  • 34 Muench MO, Rae J, Bárcena A , et al. Transplantation of a fetus with paternal Thy-1(+)CD34(+)cells for chronic granulomatous disease. Bone Marrow Transplant 2001; 27 (4) 355-364
  • 35 Flake AW, Zanjani ED. In utero hematopoietic stem cell transplantation. A status report. JAMA 1997; 278 (11) 932-937
  • 36 Westgren M, Ringden O, Eik-Nes S , et al. Lack of evidence of permanent engraftment after in utero fetal stem cell transplantation in congenital hemoglobinopathies. Transplantation 1996; 61 (8) 1176-1179
  • 37 Surbek D, Schoeberlein A, Wagner A. Perinatal stem-cell and gene therapy for hemoglobinopathies. Semin Fetal Neonatal Med 2008; 13 (4) 282-290
  • 38 Bambach BJ, Moser HW, Blakemore K , et al. Engraftment following in utero bone marrow transplantation for globoid cell leukodystrophy. Bone Marrow Transplant 1997; 19 (4) 399-402
  • 39 Wengler GS, Lanfranchi A, Frusca T , et al. In-utero transplantation of parental CD34 haematopoietic progenitor cells in a patient with X-linked severe combined immunodeficiency (SCIDXI). Lancet 1996; 348 (9040) 1484-1487
  • 40 Buckley RH, Schiff SE, Schiff RI , et al. Hematopoietic stem-cell transplantation for the treatment of severe combined immunodeficiency. N Engl J Med 1999; 340 (7) 508-516
  • 41 Flake AW, Zanjani ED. Treatment of severe combined immunodeficiency. N Engl J Med 1999; 341 (4) 291-292
  • 42 Walters MC, Patience M, Leisenring W , et al. Bone marrow transplantation for sickle cell disease. N Engl J Med 1996; 335 (6) 369-376
  • 43 Andreani M, Nesci S, Lucarelli G , et al. Long-term survival of ex-thalassemic patients with persistent mixed chimerism after bone marrow transplantation. Bone Marrow Transplant 2000; 25 (4) 401-404
  • 44 Sato M, Tanigawa M, Kikuchi N. Nonviral gene transfer to surface skin of mid-gestational murine embryos by intraamniotic injection and subsequent electroporation. Mol Reprod Dev 2004; 69 (3) 268-277
  • 45 Yoshizawa J, Li XK, Fujino M , et al. Successful in utero gene transfer using a gene gun in midgestational mouse fetuses. J Pediatr Surg 2004; 39 (1) 81-84
  • 46 Santore MT, Roybal JL, Flake AW. Prenatal stem cell transplantation and gene therapy. Clin Perinatol 2009; 36 (2) 451-471 , xi
  • 47 Endo M, Henriques-Coelho T, Zoltick PW , et al. The developmental stage determines the distribution and duration of gene expression after early intra-amniotic gene transfer using lentiviral vectors. Gene Ther 2010; 17 (1) 61-71
  • 48 Yang EY, Cass DL, Sylvester KG, Wilson JM, Adzick NS ; British Association of Paediatric Surgeons. BAPS Prize—1997. Fetal gene therapy: efficacy, toxicity, and immunologic effects of early gestation recombinant adenovirus. J Pediatr Surg 1999; 34 (2) 235-241
  • 49 Iwamoto HS, Trapnell BC, McConnell CJ, Daugherty C, Whitsett JA. Pulmonary inflammation associated with repeated, prenatal exposure to an E1, E3-deleted adenoviral vector in sheep. Gene Ther 1999; 6 (1) 98-106
  • 50 David A, Cook T, Waddington S , et al. Ultrasound-guided percutaneous delivery of adenoviral vectors encoding the beta-galactosidase and human factor IX genes to early gestation fetal sheep in utero. Hum Gene Ther 2003; 14 (4) 353-364
  • 51 Mueller C, Flotte TR. Clinical gene therapy using recombinant adeno-associated virus vectors. Gene Ther 2008; 15 (11) 858-863
  • 52 Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 1997; 15 (9) 871-875
  • 53 Olsen JC. Gene transfer vectors derived from equine infectious anemia virus. Gene Ther 1998; 5 (11) 1481-1487
  • 54 Sena-Esteves M, Tebbets JC, Steffens S, Crombleholme T, Flake AW. Optimized large-scale production of high titer lentivirus vector pseudotypes. J Virol Methods 2004; 122 (2) 131-139
  • 55 Henriques-Coelho T, Gonzaga S, Endo M , et al. Targeted gene transfer to fetal rat lung interstitium by ultrasound-guided intrapulmonary injection. Mol Ther 2007; 15 (2) 340-347
  • 56 Shen JS, Meng XL, Maeda H, Ohashi T, Eto Y. Widespread gene transduction to the central nervous system by adenovirus in utero: implication for prenatal gene therapy to brain involvement of lysosomal storage disease. J Gene Med 2004; 6 (11) 1206-1215
  • 57 Endo M, Zoltick PW, Peranteau WH , et al. Efficient in vivo targeting of epidermal stem cells by early gestational intraamniotic injection of lentiviral vector driven by the keratin 5 promoter. Mol Ther 2008; 16 (1) 131-137
  • 58 Endo M, Zoltick PW, Chung DC , et al. Gene transfer to ocular stem cells by early gestational intraamniotic injection of lentiviral vector. Mol Ther 2007; 15 (3) 579-587
  • 59 Buckley SM, Waddington SN, Jezzard S , et al. Factors influencing adenovirus-mediated airway transduction in fetal mice. Mol Ther 2005; 12 (3) 484-492
  • 60 U.S. National Institutes of Health. Recombinant DNA Advisory Committee. Prenatal gene tranfer: scientific, medical, and ethical issues: a report of the Recombinant DNA Advisory Committee. Hum Gene Ther 2000; 11 (8) 1211-1229
  • 61 Lipshutz GS, Sarkar R, Flebbe-Rehwaldt L, Kazazian H, Gaensler KM. Short-term correction of factor VIII deficiency in a murine model of hemophilia A after delivery of adenovirus murine factor VIII in utero. Proc Natl Acad Sci U S A 1999; 96 (23) 13324-13329
  • 62 Schneider H, Mühle C, Douar AM , et al. Sustained delivery of therapeutic concentrations of human clotting factor IX—a comparison of adenoviral and AAV vectors administered in utero. J Gene Med 2002; 4 (1) 46-53
  • 63 Sabatino DE, Mackenzie TC, Peranteau W , et al. Persistent expression of hF.IX After tolerance induction by in utero or neonatal administration of AAV-1-F.IX in hemophilia B mice. Mol Ther 2007; 15 (9) 1677-1685
  • 64 Waddington SN, Nivsarkar MS, Mistry AR , et al. Permanent phenotypic correction of hemophilia B in immunocompetent mice by prenatal gene therapy. Blood 2004; 104 (9) 2714-2721
  • 65 David AL, McIntosh J, Peebles DM , et al. Recombinant adeno-associated virus-mediated in utero gene transfer gives therapeutic transgene expression in the sheep. Hum Gene Ther 2011; 22 (4) 419-426
  • 66 Mattar CN, Nathwani AC, Waddington SN , et al. Stable human FIX expression after 0.9G intrauterine gene transfer of self-complementary adeno-associated viral vector 5 and 8 in macaques. Mol Ther 2011; 19 (11) 1950-1960
  • 67 Tang Y, Cummins J, Huard J, Wang B. AAV-directed muscular dystrophy gene therapy. Expert Opin Biol Ther 2010; 10 (3) 395-408
  • 68 MacKenzie TC, Kobinger GP, Louboutin JP , et al. Transduction of satellite cells after prenatal intramuscular administration of lentiviral vectors. J Gene Med 2005; 7 (1) 50-58
  • 69 Ahmad A, Brinson M, Hodges BL, Chamberlain JS, Amalfitano A. Mdx mice inducibly expressing dystrophin provide insights into the potential of gene therapy for duchenne muscular dystrophy. Hum Mol Genet 2000; 9 (17) 2507-2515
  • 70 Gregory LG, Waddington SN, Holder MV , et al. Highly efficient EIAV-mediated in utero gene transfer and expression in the major muscle groups affected by Duchenne muscular dystrophy. Gene Ther 2004; 11 (14) 1117-1125
  • 71 Themis M, Schneider H, Kiserud T , et al. Successful expression of beta-galactosidase and factor IX transgenes in fetal and neonatal sheep after ultrasound-guided percutaneous adenovirus vector administration into the umbilical vein. Gene Ther 1999; 6 (7) 1239-1248
  • 72 Westlake VJ, Jolly RD, Jones BR , et al. Hematopoietic cell transplantation in fetal lambs with ceroid-lipofuscinosis. Am J Med Genet 1995; 57 (2) 365-368
  • 73 Karolewski BA, Wolfe JH. Genetic correction of the fetal brain increases the lifespan of mice with the severe multisystemic disease mucopolysaccharidosis type VII. Mol Ther 2006; 14 (1) 14-24
  • 74 Larson JE, Morrow SL, Happel L, Sharp JF, Cohen JC. Reversal of cystic fibrosis phenotype in mice by gene therapy in utero. Lancet 1997; 349 (9052) 619-620
  • 75 Buckley SM, Waddington SN, Jezzard S , et al. Intra-amniotic delivery of CFTR-expressing adenovirus does not reverse cystic fibrosis phenotype in inbred CFTR-knockout mice. Mol Ther 2008; 16 (5) 819-824
  • 76 Davies LA, Varathalingam A, Painter H , et al. Adenovirus-mediated in utero expression of CFTR does not improve survival of CFTR knockout mice. Mol Ther 2008; 16 (5) 812-818
  • 77 Joyeux L, Danzer E, Limberis MP , et al. In utero lung gene transfer using adeno-associated viral and lentiviral vectors in mice. Hum Gene Ther Methods 2014; (e-pub ahead of print)
  • 78 Deprest JA, Flemmer AW, Gratacos E, Nicolaides K. Antenatal prediction of lung volume and in-utero treatment by fetal endoscopic tracheal occlusion in severe isolated congenital diaphragmatic hernia. Semin Fetal Neonatal Med 2009; 14 (1) 8-13
  • 79 Deprest J, De Coppi P. Antenatal management of isolated congenital diaphragmatic hernia today and tomorrow: ongoing collaborative research and development. Journal of Pediatric Surgery Lecture. J Pediatr Surg 2012; 47 (2) 282-290
  • 80 Hacein-Bey-Abina S, Garrigue A, Wang GP , et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 2008; 118 (9) 3132-3142
  • 81 Themis M, Waddington SN, Schmidt M , et al. Oncogenesis following delivery of a nonprimate lentiviral gene therapy vector to fetal and neonatal mice. Mol Ther 2005; 12 (4) 763-771
  • 82 Porada CD, Park PJ, Tellez J , et al. Male germ-line cells are at risk following direct-injection retroviral-mediated gene transfer in utero. Mol Ther 2005; 12 (4) 754-762
  • 83 Porada CD, Park PJ, Almeida-Porada G , et al. Gestational age of recipient determines pattern and level of transgene expression following in utero retroviral gene transfer. Mol Ther 2005; 11 (2) 284-293
  • 84 Gonzaga S, Henriques-Coelho T, Davey M , et al. Cystic adenomatoid malformations are induced by localized FGF10 overexpression in fetal rat lung. Am J Respir Cell Mol Biol 2008; 39 (3) 346-355
  • 85 Tarantal AF, Chen H, Shi TT , et al. Overexpression of transforming growth factor-beta1 in fetal monkey lung results in prenatal pulmonary fibrosis. Eur Respir J 2010; 36 (4) 907-914
  • 86 Gaspar HB, Cooray S, Gilmour KC , et al. Hematopoietic stem cell gene therapy for adenosine deaminase-deficient severe combined immunodeficiency leads to long-term immunological recovery and metabolic correction. Sci Transl Med 2011; 3 (97) 97ra80
  • 87 Orlandi F, Damiani G, Jakil C, Lauricella S, Bertolino O, Maggio A. The risks of early cordocentesis (12-21 weeks): analysis of 500 procedures. Prenat Diagn 1990; 10 (7) 425-428
  • 88 Schoeberlein A, Holzgreve W, Dudler L, Hahn S, Surbek DV. In utero transplantation of autologous and allogeneic fetal liver stem cells in ovine fetuses. Am J Obstet Gynecol 2004; 191 (3) 1030-1036
  • 89 Loukogeorgakis SP, Maghsoudlou P, De Coppi P. Recent developments in therapies with stem cells from amniotic fluid and placenta. Fetal Matern Med Rev 2013; 24 (3) 148-168
  • 90 De Coppi P, Bartsch Jr G, Siddiqui MM , et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 2007; 25 (1) 100-106
  • 91 Ditadi A, de Coppi P, Picone O , et al. Human and murine amniotic fluid c-Kit+Lin- cells display hematopoietic activity. Blood 2009; 113 (17) 3953-3960
  • 92 Piccoli M, Franzin C, Bertin E , et al. Amniotic fluid stem cells restore the muscle cell niche in a HSA-Cre, Smn(F7/F7) mouse model. Stem Cells 2012; 30 (8) 1675-1684
  • 93 Shaw SW, Bollini S, Nader KA , et al. Autologous transplantation of amniotic fluid-derived mesenchymal stem cells into sheep fetuses. Cell Transplant 2011; 20 (7) 1015-1031