RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
          
          https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000084.xml
        Synthesis 2016; 48(15): 2438-2448
DOI: 10.1055/s-0035-1561418
   DOI: 10.1055/s-0035-1561418
paper
   Synthesis of 1,2′-Biazulenes by Palladium-Catalyzed Unusual Homocoupling Reaction of 1-Haloazulenes in the Presence of Ferrocene
Autoren
Weitere Informationen
            
               
                  
            
         
      
   Publikationsverlauf
Received: 26. Januar 2016
Accepted after revision: 22. Februar 2016
Publikationsdatum:
22. März 2016 (online)

Abstract
The synthesis of 1,2′-biazulenes was established by palladium-catalyzed homocoupling reactions of the corresponding 1-haloazulenes in the presence of ferrocene. The optical properties of the novel 1,2′-biazulenes were investigated by UV/Vis spectroscopy and theoretical calculations. The redox behaviors of 1,2′-biazulenes were also examined by cyclic voltammetry (CV) and differential pulse voltammetry (DPV).
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1561418.
               
 - Supporting Information (PDF) (opens in new window)
 
- 
            
References
 - 1 Zeller K.-P. Azulene . In Houben-Weyl . 4th ed., Vol. V, Part 2c; Kropf H. Georg Thieme Verlag; Stuttgart: 1985: 127
 - 2a Kurihara T, Suzuki T, Wakabayashi H, Ishikawa S, Shindo K, Shimada Y, Chiba H, Miyashi T, Yasunami M, Nozoe T. Bull. Chem. Soc. Jpn. 1996; 69: 2003
 - 2b Hünig S, Ort B. Liebigs Ann. Chem. 1984; 1959
 - 2c Hünig S, Ort B. Liebigs Ann. Chem. 1984; 1936
 - 3a Razus AC. J. Chem. Soc., Perkin Trans. 1 2000; 981
 - 3b Razus AC, Nitu C. J. Chem. Soc., Perkin Trans. 1 2000; 989
 - 3c Razus AC, Nitu C, Carvaci S, Birzan L, Razus SA, Pop M, Tarko L. J. Chem. Soc., Perkin Trans. 1 2001; 1227
 - 3d Shoji T, Ito S, Toyota K, Yasunami M, Morita N. Tetrahedron Lett. 2007; 48: 4999
 - 3e Shoji T, Higashi J, Ito S, Toyota K, Asao T, Yasunami M, Fujimori K, Morita N. Eur. J. Org. Chem. 2008; 1242
 - 3f Shoji T, Shimomura E, Inoue Y, Maruyama M, Yamamoto A, Fujimori K, Ito S, Yasunami M, Morita N. Heterocycles 2013; 87: 303
 - 3g Shoji T, Maruyama A, Maruyama M, Ito S, Okujima T, Higashi J, Toyota K, Morita N. Bull. Chem. Soc. Jpn. 2014; 87: 141
 - 4a Ito S, Terazono T, Kubo T, Okujima T, Morita N, Murafuji T, Sugihara Y, Fujimori K, Kawakami J, Tajiri A. Tetrahedron 2004; 60: 5357
 - 4b Shibasaki T, Ooishi T, Yamanouchi N, Murafuji T, Kurotobi K, Sugihara Y. J. Org. Chem. 2008; 73: 7971
 - 4c Shoji T, Maruyama A, Ito S, Okujima T, Yasunami M, Higashi J, Morita N. Heterocycles 2014; 89: 2588
 - 5 Crombie AL, Kane JL. Jr, Shea KM, Danheiser RL. J. Org. Chem. 2004; 69: 8652
 - 6 Hanke M, Jutz C. Angew. Chem., Int. Ed. Engl. 1979; 18: 214
 - 7a Okujima T, Ito S, Morita N. Tetrahedron Lett. 2002; 43: 1261
 - 7b Ito S, Okujima T, Morita N. J. Chem. Soc., Perkin Trans. 1 2002; 1896
 - 7c Maher TR, Spaeth AD, Neal BM, Berrie CL, Thompson WH, Day VW, Barybin MV. J. Am. Chem. Soc. 2010; 132: 15924
 - 8a Kurotobi K, Tabata H, Miyauchi M, Murafuji T, Sugihara Y. Synthesis 2002; 1013
 - 8b Shoji T, Yamamoto A, Shimomura E, Maruyama M, Ito S, Okujima T, Toyota K, Morita N. Chem. Lett. 2013; 42: 638
 - 8c Yamaguchi Y, Ogawa K, Nakayama K, Ohba Y, Katagiri H. J. Am. Chem. Soc. 2013; 135: 19095
 - 9 Morita T, Takase K. Bull. Chem. Soc. Jpn. 1982; 55: 1144
 - 10 Lin S.-J, Jiang S.-Y, Huang T.-C, Dai C.-S, Tsai P.-F, Takeshita H, Lin Y.-S, Nozoe T. Bull. Chem. Soc. Jpn. 1997; 70: 3071
 - 11 Dyker G, Borowski S, Heiermann J, Körning J, Opwis K, Henkel G, Köckerling M. J. Organomet. Chem. 2000; 606: 108
 - 12 Kurotobi K, Takakura K, Murafuji T, Sugihara Y. Synthesis 2001; 1346
 - 13a Miyaura N, Suzuki A. J. Chem. Soc., Chem. Commun. 1979; 866
 - 13b Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
 - 13c Martin R, Buchwald SL. Acc. Chem. Res. 2008; 41: 1461
 - 14a Thanh NC, Ikai M, Kajioka T, Fujikawa H, Taga Y, Ogawa S, Zhang T, Shimada H, Miyahara Y, Kuroda S, Oda M. Tetrahedron 2006; 62: 11227
 - 14b Oda M, Thanh NC, Ikai M, Fujikawa H, Nakajima K, Kuroda S. Tetrahedron 2007; 63: 10608
 - 15 A small amount of ferrocene was sublimated in the evaporation process of the solvent.
 - 16 Nozoe T, Ishikawa S, Shindo K. Chem. Lett. 1989; 353
 - 17a Shoji T, Higashi J, Ito S, Okujima T, Yasunami M, Morita N. Chem. Eur. J. 2011; 17: 5116
 - 17b Shoji T, Shimomura E, Maruyama M, Maruyama A, Ito S, Okujima T, Toyota K, Morita N. Eur. J. Org. Chem. 2013; 7785
 - 17c Shoji T, Ito S, Okujima T, Morita N. Chem. Eur. J. 2013; 19: 5721
 - 18 No reaction was also observed in the reaction of 7 with NIS.
 - 19a Ueno T, Toda H, Yasunami M, Yoshifuji M. Bull. Chem. Soc. Jpn. 1996; 69: 1645
 - 19b Ito S, Nomura A, Morita N, Kabuto C, Kobayashi H, Maejima S, Fujimori K, Yasunami M. J. Org. Chem. 2002; 67: 7295
 - 20a McDonald RN, Reitz RR, Richmond JM. J. Org. Chem. 1976; 41: 1822
 - 20b Yamashiro S, Imafuku K. J. Heterocycl. Chem. 2002; 39: 671
 - 21 Anderson AG. Jr, Gale DJ, McDonald RN, Anderson RG, Rhodes RC. J. Org. Chem. 1964; 29: 1373
 - 22 Elwahy AH. M, Hafner K. Eur. J. Org. Chem. 2010; 265
 - 23 Lash TD, Lammer AD, Idate AS, Colby DA, White K. J. Org. Chem. 2012; 77: 2368
 - 24 Nefedov VA, Tarygina LK. Zh. Org. Khim. 1976; 12: 1763
 - 25 Compound 14a was prepared by the reaction of 7 with NIS, according to the literature: Dubovik J., Bredihhin A.; Synthesis; 2015, 47: 2663.
 - 26 Anderson AG. Jr, Nelson JA, Tazuma JJ. J. Am. Chem. Soc. 1953; 75: 4980
 - 27 Since attempts to separate 22 and 23 by both silica gel column chromatography and GPC were unsuccessful, the ratio of the products was determined by 1H NMR spectral measurement.
 - 28 Lu Y, Lemal DM, Jasinski JP. J. Am. Chem. Soc. 2000; 122: 2440
 - 29 Hassan J, Sevignon M, Gozzi C, Schulz E, Lemaire M. Chem. Rev. 2002; 102: 1359
 - 30 Ram RM, Singth V. Tetrahedron Lett. 2006; 47: 7625
 - 31 Silverira PB, Lando VR, Dupont J, Monteiro AL. Tetrahedron Lett. 2002; 43: 2327
 - 32 Seganish WM, Mowery ME, Riggleman S, DeShong P. Tetrahedron 2005; 61: 2117
 - 33 The B3LYP/6-31G** time-dependence density functional calculations were performed with Spartan′10, Wavefunction, Irvine, CA.
 - 34 Ito S, Yamazaki S, Kudo S, Sekiguchi R, Kawakami J, Takahashi M, Matsuhashi T, Toyota K, Morita N. Tetrahedron 2014; 70: 2796
 - 35 The voltammetry measurements were performed with a BAS 100B/W electrochemical workstation equipped with a standard three-electrode configuration and all measurements were carried out under an argon atmosphere. Et4NClO4 (0.10 M) in PhCN was used as a supporting electrolyte, with a Pt wire auxiliary and disk working electrodes. Reference electrode was formed from Ag/AgNO3 (0.01 M) in MeCN containing Bu4NClO4 (0.10 M). The half-wave potential of the ferrocene/ferrocenium ion couple (Fc/Fc+) under these conditions using this reference electrode was observed at +0.15 V on CV. Accuracy of the reference electrode was confirmed by CV measurements of the couple in each sample as an internal ferrocene standard.
 - 36 McDaniel DH, Brown HC. J. Org. Chem. 1958; 23: 420
 - 37 Since the 3-position of azulene should be correspond to the meta-position of the azulene ring, Hammett substitution constant σm was applied in this case.
 - 38 Correlations between Hammett substitution constants and redox potential of ferrocene derivatives are previously reported: Komenda J, Tirouflet J. C. R. Seances Acad. Sci. 1962; 254: 3093