Synthesis 2018; 50(16): 3250-3256
DOI: 10.1055/s-0037-1609965
paper
© Georg Thieme Verlag Stuttgart · New York

A Metal-Free Approach for Brønsted Acid Promoted C–H Alkyl­ation of Heteroarenes with Alkyl Peroxides

Yuehua Zeng
a   Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute ofResearch on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, People’s Republic of China   Email: hlbao@fjirsm.ac.cn   Email: qianbo@fjirsm.ac.cn
b   College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350108, People’s Republic of China
,
Bo Qian*
a   Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute ofResearch on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, People’s Republic of China   Email: hlbao@fjirsm.ac.cn   Email: qianbo@fjirsm.ac.cn
,
Yajun Li
a   Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute ofResearch on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, People’s Republic of China   Email: hlbao@fjirsm.ac.cn   Email: qianbo@fjirsm.ac.cn
,
a   Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute ofResearch on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, People’s Republic of China   Email: hlbao@fjirsm.ac.cn   Email: qianbo@fjirsm.ac.cn
› Author Affiliations
We thank NSFC (Grant Nos. 21502191 and 21672213), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB20000000), The 100 Talents Program, ‘The 1000 Youth Talents Program’, Natural Science Foundation of Fujian Province (Grant No. 2016J01081) and Haixi Institute of CAS (CXZX-2017-P01) for financial support.
Further Information

Publication History

Received: 28 March 2018

Accepted after revision: 16 April 2018

Publication Date:
29 May 2018 (online)


Abstract

A metal-free protocol for Minisci C–H alkylation of hetero­arenes using alkyl peroxides as the alkylating reagents and internal oxidants simultaneously under promotion of Brønsted acid has been demonstrated. A series of alkyl substituted heteroarenes were readily prepared by the C–H alkylation in moderate to good yields. A possible pathway involving the addition of alkyl radical to heterocycle followed by rearomatization is described.

Supporting Information

 
  • References

    • 1a Schubert US. Eschbaumer C. Angew. Chem. Int. Ed. 2002; 41: 2892
    • 1b Laird T. Org. Process Res. Dev. 2006; 10: 851
    • 1c Campeau L.-C. Fagnou K. Chem. Soc. Rev. 2007; 36: 1058
    • 1d Welsch ME. Snyder SA. Stockwell BR. Curr. Opin. Chem. Biol. 2010; 14: 347
    • 1e Duncton MA. J. Med. Chem. Commun. 2011; 2: 1135
    • 1f Vitaku E. Smith DT. Njardarson JT. J. Med. Chem. 2014; 57: 10257
    • 1g Wang D. Weinstein AB. White PB. Stahl SS. Chem. Rev. 2018; 118: 2636

      Selected reviews on C–H functionalization:
    • 2a Colby DA. Bergman RG. Ellman JA. Chem. Rev. 2010; 110: 624
    • 2b Brückl T. Baxter RD. Ishihara Y. Baran PS. Acc. Chem. Res. 2012; 45: 826
    • 2c Hartwig JF. J. Am. Chem. Soc. 2016; 138: 2
    • 2d Wei Y. Hu P. Zhang M. Su W. Chem. Rev. 2017; 117: 8864
    • 2e Yi H. Zhang G. Wang H. Huang Z. Wang J. Singh AK. Lei A. Chem. Rev. 2017; 117: 9016
    • 2f Shang R. Ilies L. Nakamura E. Chem. Rev. 2017; 117: 9086
    • 2g Murakami K. Yamada S. Kaneda T. Itami K. Chem. Rev. 2017; 117: 9302

      Selected reviews on C–H alkylation:
    • 3a Schönherr H. Cernak T. Angew. Chem. Int. Ed. 2013; 52: 12256
    • 3b Yang L. Huang H. Chem. Rev. 2015; 115: 3468
    • 3c Dong Z. Ren Z. Thompson SJ. Xu Y. Dong G. Chem. Rev. 2017; 117: 9333

      Selected examples of Minisci reaction:
    • 4a Minisci F. Galli R. Cecere M. Malatesta V. Caronna T. Tetrahedron Lett. 1968; 5609
    • 4b Minisci F. Bernardi R. Bertini F. Galli R. Perchinummo M. Tetrahedron 1971; 27: 3575
    • 4c Castaldi G. Minisci F. Tortelli V. Vismara E. Tetrahedron Lett. 1984; 25: 3897
    • 4d Minisci F. Giordano C. Vismara E. Levi S. Tortelli V. J. Am. Chem. Soc. 1984; 106: 7146
    • 4e Minisci F. Vismara E. Fontana F. Morini G. Serravalle M. Giordano G. J. Org. Chem. 1986; 51: 4411
    • 4f Minisci F. Vismara E. Fontana F. J. Org. Chem. 1989; 54: 5224
    • 4g Minisci F. Fontana F. Pianese G. Yan YM. J. Org. Chem. 1993; 58: 4207

      For selected reviews on the Minisci reaction, see:
    • 5a Minisci F. Synthesis 1973; 1
    • 5b Minisci F. Citterio A. Giordano C. Acc. Chem. Res. 1983; 16: 27
    • 5c Minisci F. Vismara E. Fontana F. Heterocycles 1989; 28: 489
    • 5d Minisci F. Fontana F. Vismara E. J. Heterocycl. Chem. 1990; 27: 79
    • 5e Harrowven DC. Sutton BJ. Prog. Heterocycl. Chem. 2005; 16: 27
    • 5f Punta C. Minisci F. Trends Heterocycl. Chem. 2008; 13: 1

      Selected examples of metal-mediated Minisci-type C–H alkylation of heteroarenes:
    • 6a Cowden CJ. Org. Lett. 2003; 5: 4497
    • 6b Palde PB. McNaughton BR. Ross NT. Gareiss PC. Mace CR. Spitale RC. Miller BL. Synthesis 2007; 2287
    • 6c Duncton MA. J. Estiarte MA. Johnson RJ. Cox M. O’Mahony DJ. R. Edwards WT. Kelly MG. J. Org. Chem. 2009; 74: 6354
    • 6d Molander GA. Colombel V. Braz VA. Org. Lett. 2011; 13: 1852
    • 6e Correia CA. Yang L. Li C.-J. Org. Lett. 2011; 13: 4581
    • 6f Fujiwara Y. Dixon JA. O’Hara F. Funder ED. Dixon DD. Rodriguez RA. Baxter RD. Herlé B. Sach N. Collins MR. Ishihara Y. Baran PS. Nature 2012; 492: 95
    • 6g Presset M. Fleury-Brégeot N. Oehlrich D. Rombouts F. Molander GA. J. Org. Chem. 2013; 78: 4615
    • 6h Xia R. Xie M.-S. Niu H.-Y. Qu G.-R. Guo H.-M. Org. Lett. 2014; 16: 444
    • 6i Zhao W.-M. Chen X.-L. Yuan J.-W. Qu L.-B. Duan L.-K. Zhao Y.-F. Chem. Commun. 2014; 50: 2018
    • 6j Ma X. Herzon SB. J. Am. Chem. Soc. 2016; 138: 8718
    • 6k Mai DN. Baxter RD. Org. Lett. 2016; 18: 3738
    • 6l Bordi S. Starr JT. Org. Lett. 2017; 19: 2290
    • 6m Ma X. Dang H. Rose JA. Rablen P. Herzon SB. J. Am. Chem. Soc. 2017; 139: 5998

      Selected examples of photoredox Minisci-type C–H alkylation of heteroarenes via metal catalysis:
    • 7a McNally A. Prier CK. MacMillan DW. C. Science 2011; 334: 1114
    • 7b DiRocco DA. Dykstra K. Krska S. Vachal P. Conway DV. Tudge M. Angew. Chem. Int. Ed. 2014; 53: 4802
    • 7c Jin J. MacMillan DW. C. Angew. Chem. Int. Ed. 2015; 54: 1565
    • 7d Jin J. MacMillan DW. C. Nature 2015; 525: 87
    • 7e Li G.-X. Morales-Rivera CA. Wang Y. Gao F. He G. Liu P. Chen G. Chem. Sci. 2016; 7: 6407
    • 7f Klauck FJ. R. James MJ. Glorius F. Angew. Chem. Int. Ed. 2017; 56: 12336
    • 7g Liu W. Yang X. Zhou Z.-Z. Li C.-J. Chem 2017; 2: 688
    • 7h Cheng W.-M. Shang R. Fu Y. ACS Catal. 2017; 7: 907

      Selected examples of metal-free Minisci-type C–H alkylation of heteroarenes:
    • 8a Katz RB. Mistry J. Mitchell MB. Synth. Commun. 1989; 19: 317
    • 8b Deng G. Ueda K. Yanagisawa S. Itami K. Li C.-J. Chem. Eur. J. 2009; 15: 333
    • 8c Antonchick AP. Burgmann L. Angew. Chem. Int. Ed. 2013; 52: 3267
    • 8d Bohman B. Berntsson B. Dixon RC. M. Stewart CD. Barrow RA. Org. Lett. 2014; 16: 2787
    • 8e Okugawa N. Moriyama K. Togo H. Eur. J. Org. Chem. 2015; 4973
    • 8f Tang R.-J. Kang L. Yang L. Adv. Synth. Catal. 2015; 357: 2055
    • 8g Braun M.-G. Castanedo G. Qin L. Salvo P. Zard SZ. Org. Lett. 2017; 19: 4090
    • 8h Zhang L. Liu Z.-Q. Org. Lett. 2017; 19: 6594

      Our previous work on the decarboxylation of aliphatic acids:
    • 9a Li Y. Han Y. Xiong H. Zhu N. Qian B. Ye C. Kantchev EA. B. Bao H. Org. Lett. 2016; 18: 392
    • 9b Li Y. Ge L. Qian B. Babu KR. Bao H. Tetrahedron Lett. 2016; 57: 5677
    • 9c Babu KR. Zhu N. Bao H. Org. Lett. 2017; 19: 46
    • 9d Zhu N. Zhao J. Bao H. Chem. Sci. 2017; 8: 2081
    • 9e Jian W. Ge L. Jiao Y. Qian B. Bao H. Angew. Chem. Int. Ed. 2017; 56: 3650
    • 9f Zhu X. Ye C. Li Y. Bao H. Chem. Eur. J. 2017; 23: 10254
    • 9g Ge L. Li Y. Jian W. Bao H. Chem. Eur. J. 2017; 23: 11767
    • 9h Ye C. Li Y. Bao H. Adv. Synth. Catal. 2017; 359: 3720
    • 9i Qian B. Chen S. Wang T. Zhang X. Bao H. J. Am. Chem. Soc. 2017; 139: 13076
    • 9j Yu F. Wang T. Zhou H. Li Y. Zhang X. Bao H. Org. Lett. 2017; 19: 6538

    • Review:
    • 9k Li Y. Ge L. Muhammad MT. Bao H. Synthesis 2017; 49: 5263
  • 10 Horn J. Marsden SP. Nelson A. House D. Weingarten GG. Org. Lett. 2008; 10: 4117
  • 11 Cho CS. Kim JU. Tetrahedron Lett. 2007; 48: 3775
  • 12 Li L.-H. Niu Z.-J. Liang Y.-M. Chem. Eur. J. 2017; 23: 15300
  • 13 McCallum T. Barriault L. Chem. Sci. 2016; 7: 4754
  • 14 Jo W. Kim J. Choi S. Cho SH. Angew. Chem. Int. Ed. 2016; 55: 9690
  • 15 Lee W.-C. Chen C.-H. Liu C.-Y. Yu M.-S. Lin Y.-H. Ong T.-G. Chem. Commun. 2015; 51: 17104
  • 16 Cheng WM. Shang R. Fu M.-C. Fu Y. Chem. Eur. J. 2017; 23: 2537
  • 17 Sun Y. Jiang H. Wu W. Zeng W. Wu X. Org. Lett. 2013; 15: 1598