Synlett, Table of Contents Synlett 2018; 29(12): 1639-1643DOI: 10.1055/s-0037-1610026 letter © Georg Thieme Verlag Stuttgart · New YorkOne-Pot Construction of 3-Phthalimido-1,5-benzodiazepine-2-one Derivatives via in situ Activation of N,N-Phthaloyl-serine Nobuhiro Obara* a Zeria Pharmaceutical Co., Ltd, 2512-1, Numagami, Oshikiri, Kumagaya-city, Saitama 360-0111, Japan , Takeshi Watanabe b School of Pharmaceutical Sciences, University of Shizuoka, 52-1, Yada, Suruga-ku, Shizuoka-city, Shizuoka 422-8526, Japan , Tomohiro Asakawa b School of Pharmaceutical Sciences, University of Shizuoka, 52-1, Yada, Suruga-ku, Shizuoka-city, Shizuoka 422-8526, Japan c Tokai University Institute of Innovative Science and Technology, 4-1-1, Kitakaname, Hiratsuka-city, Kanagawa 259-1292, Japan , Toshiyuki Kan b School of Pharmaceutical Sciences, University of Shizuoka, 52-1, Yada, Suruga-ku, Shizuoka-city, Shizuoka 422-8526, Japan , Takao Tanaka a Zeria Pharmaceutical Co., Ltd, 2512-1, Numagami, Oshikiri, Kumagaya-city, Saitama 360-0111, Japan› Author AffiliationsRecommend Article Abstract Buy Article All articles of this category Abstract The Michael addition of dehydroalanine-activated ester in situ generated from N,N-phthaloyl-serine with o-phenylenediamine followed by cyclization has been established under mild conditions, which afforded 3-phthalimido-1,5-benzodiazepine-2-one derivatives in moderate to good yields. Key words Key words3-amino-1,5-benzodiazepine-2-one - dehydroalanine - o-phenyl-enediamine - Michael addition reaction - in situ generation - one pot synthesis - intramolecular amidation Full Text References References and Notes 1a Hoyt SB. London C. Wyvratt MJ. Fisher MH. Cashen DE. Felix JP. Garcia ML. Li X. Lyons KA. MacIntyre DE. Martin WJ. Priest BT. Smith MM. Warren VA. Williams BS. Kaczorowski GJ. Parsons WH. Bioorg. Med. Chem. Lett. 2008; 18: 1963 1b Williams BS. Felix JP. Priest BT. Brochu RM. Dai K. Hoyt SB. London C. Tang YS. Duffy JL. Parsons WH. Kaczorowski GJ. Garcia ML. Biochemistry 2007; 46: 14693 2 Churcher I. Williams S. Kerrad S. Harrison T. Castro JL. Shearman MS. Lewis HD. Clarke EE. Wrigley JD. J. Beher D. Tang YS. Liu W. J. Med. Chem. 2003; 46: 2275 3 Kester RF. Donnell AF. Lou Y. Remiswzewski SW. Lombardo LJ. Chen S. Le NT. Lo J. Moliterni JA. Han X. Hogg JH. Liang W. Michoud C. Rupert KC. Mischke S. Le K. Weisel M. Janson CA. Lukacs CM. Fretland AJ. Hong K. Polonskaia A. Gao L. Li S. Solis DS. Aguilar D. Tardell C. Dvorozniak M. Tannu S. Lee EC. Schutt AD. Goggin B. J. Med. Chem. 2013; 56: 7788 4 Lauffer DJ. Mullican MD. Bioorg. Med. Chem. Lett. 2002; 12: 1225 5 Kawasaki D. Emori Y. Eta R. Iino Y. Hamano H. Yoshinaga K. Tanaka T. Takei M. Watson SA. Cancer Chemother. Pharmacol. 2008; 61: 883 6a Chen S. Donnell AF. Kester RF. Le K. Lou Y. Michoud C. Remiszewski S. Rupert KC. Weisel M. WO 2015071393, 2015 6b Bandyopadhyay D. Eidam PM. Gough PJ. Harris PA. Jeong JU. Kang J. King BW. Lakdawala SA. Marquis RW. Jr. Leister LK. Rahman A. Ramanjulu JM. Sheon CA. Singhaus RJr. Zhang D. WO 2014125444, 2014 6c Donnell AF. Kester RF. Lou Y. Moliterni JA. Remiszewski S. WO 2014044622, 2014 6d Asai M. Haketa T. Inamura S. Ishikawa M. Jona H. Kawamoto H. Kurihara H. Shibata J. Shimamura T. Suga T. Watanabe H. WO 2010084979, 2010 6e Lauffer DJ. Mullican MD. Bioorg. Med. Chem. Lett. 2002; 12: 1225 6f Bemis GW. Golec JM. C. Lauffer DJ. Mullican MD. Murcko MA. Livingston DJ. WO 9535308, 1995 7a Claremon DA. Liverton N. Selnick HG. Smith GR. WO 9640653, 1996 7b Claremon DA. Freidinger RM. Liverton N. Selnick HG. Smith GR. WO 9640656, 1996 7c Carmel JS. Stanton JL. US 4477464, 1984 8 Obara N. Watanabe T. Asakawa T. Kan T. Tanaka T. Synlett 2017; 28: 1183 9a Donohoe TJ. Jones CR. Kornahrens AF. Barbosa LC. A. Walport LJ. Tatton MR. O’Hagan M. Rathi AH. Baker DB. J. Org. Chem. 2013; 78: 12338 9b Shaw MH. Croft RA. Whittingham WG. Bower JF. J. Am. Chem. Soc. 2015; 137: 8054 9c Zhang H. Li H. Yang H. Fu H. Org. Lett. 2016; 18: 3362 10a Ferreira PM. T. Monteiro LS. Pereira G. Ribeiro L. Sacramento J. Silva L. Eur. J. Org. Chem. 2007; 5934 10b Degnan AP. Chaturvedula PV. Conway CM. Cook DA. Davis CD. Denton R. Han X. Macci R. Mathias NR. Moench P. Pin SS. Ren SX. Schartman R. Signor LJ. Thalody G. Widmann KA. Xu C. Macor JE. Dubowchik GM. J. Med. Chem. 2008; 51: 4858 10c Goodall K. Parsons AF. Tetrahedron Lett. 1995; 36: 3259 10d Berti F. Ebert C. Gardossi L. Tetrahedron Lett. 1992; 33: 8145 10e Navarre L. Martinez R. Genet J. Darses S. J. Am. Chem. Soc. 2008; 130: 6159 10f Ramesh R. De K. Chandrasekaran S. Tetrahedron 2007; 63: 10534 Reaction Conditions 11a To a solution of 1 (4.62 mmol) and 4-methylmorpholine (4.62 mmol) in CH2Cl2 (5 mL) under an argon atmosphere at 2–4 °C was added ClCO2 i-Bu (4.62 mmol), followed by stirring for 1 min. Compound 2 (4.62 mmol) was added to the mixture, followed by stirring at room temperature for 30–40 min. 11b To a solution of 1 (4.62 mmol), 2 (4.62 mmol), and NEt3 (4.62 mmol) in CH2Cl2 (5 mL) under an argon atmosphere at 2 °C was added diphenylphosphinic chloride (4.62 mmol), followed by stirring at room temperature for 1–1.5 h. 11c To a solution of 1 (4.62 mmol) and DMF (5 μL) in CH2Cl2 (12 mL) under an argon atmosphere at 2 °C was added oxalyl chloride (6.93 mmol), followed by stirring at room temperature for 3 h. Excess oxalyl chloride and solvent were evaporated away to yield the crude intermediate. To a solution of 2 (4.62 mmol) in CH2Cl2 (5 mL) at 2 °C was added a solution of crude intermediate and NEt3 (4.62 mmol) in CH2Cl2 (5 mL), followed by stirring for 3 h. 12 N-(2-Aminophenyl)-2-(1,3-dioxoisoindolin-2-yl)acrylamide (4a) 1H NMR (400 MHz, DMSO-d 6): δ = 9.75 (1 H, s), 7.88–8.00 (4 H, m), 6.94–7.01 (2 H, m), 6.73 (1 H, dd, J = 8.3, 1.3 Hz), 6.55 (1 H, td, J = 7.4, 1.3 Hz), 6.46 (1 H, s), 5.91 (1 H, s), 4.82 (2 H, br) ppm. 13C NMR (100 MHz, DMSO-d 6): δ = 166.73, 161.15, 143.63, 134.77, 132.28, 131.89, 127.16, 123.50, 123.38, 121.87, 116.04, 115.63 ppm. FTIR (KBr): 3365, 1717, 1651, 1623, 1540, 1463, 1379, 1308, 887, 731 cm–1. HRMS (ESI): m/z calcd for C17H12N3O3 [M – H]–: 306.0884; found: 306.0854. N,N'-(1,2-Phenylene)bis[2-(1,3-dioxoisoindolin-2-yl)acrylamide] (5a) 1H NMR (400 MHz, DMSO-d 6): δ = 9.89 (2 H, s), 7.86–7.99 (8 H, m), 7.52–7.58 (2 H, m), 7.21–7.29 (2 H, m), 6.35 (2 H, s), 5.97 (2 H, s) ppm. 13C NMR (100 MHz, DMSO-d 6): δ = 166.43, 161.30, 134.85, 131.89, 131.70, 130.02, 125.87, 125.06, 124.37, 123.64 ppm. FTIR (KBr): 3244, 1730, 1662, 1630, 1517, 1375, 1294, 1084, 886, 714 cm–1. HRMS (ESI): m/z calcd for C28H17N4O6 [M – H]–: 505.1154; found: 505.1108. 13 2-Aetamido-N-(2-aminophenyl)acrylamide (4b) 1H NMR (400 MHz, DMSO-d 6): δ = 9.41 (1 H, s), 9.34 (1 H, s), 7.03 (1 H, dd, J = 7.8, 1.4 Hz), 6.95 (1 H, td, J = 7.8, 1.4 Hz), 6.72 (1 H, dd, J = 7.8, 1.4 Hz), 6.54 (1 H, td, J = 7.8, 1.4 Hz), 5.81 (1 H, s), 5.47 (1 H, s), 4.90 (2 H, br), 2.01 (3 H, s) ppm. 13C NMR (100 MHz, DMSO-d 6): δ = 169.07, 163.16, 143.68, 137.17, 126.96, 126.79, 122.21, 115.81, 115.59, 104.54, 23.51 ppm. FTIR (KBr): 3317, 1655, 1630, 1505, 1456, 1404, 1313, 1259, 887, 759, 611 cm–1. HRMS (ESI): m/z calcd for C11H14N3O2 [M + H]+: 220.1081; found: 220.1068. Benzyl {3-[(2-Aminophenyl)amino]-3-oxoprop-1-en-2-yl}carbamate (4c) 1H NMR (400 MHz, DMSO-d 6): δ = 9.51 (1 H, s), 8.94 (1 H, s), 7.30–7.44 (5 H, m), 7.02 (1 H, dd, J = 7.8, 1.4 Hz), 6.95 (1 H, td, J = 7.8, 1.4 Hz), 6.72 (1 H, dd, J = 7.8, 1.4 Hz), 6.54 (1 H, td, J = 7.8, 1.4 Hz), 5.56 (1 H, s), 5.43 (1 H, s), 5.12 (2 H, s), 4.92 (2 H, br) ppm. 13C NMR (100 MHz, DMSO-d 6): δ = 162.91, 153.55, 143.67, 137.18, 136.46, 128.42, 128.01, 127.93, 126.97, 126.86, 122.19, 115.85, 115.65, 103.34, 65.93 ppm. FTIR (KBr: 3379, 3347, 1729, 1614, 1487, 1457, 1214, 1206, 1066, 751, 699 cm–1. HRMS (ESI): m/z calcd for C17H17N3O3Na [M + Na]+: 334.1162; found: 334.1180. Dibenzyl [(1,2-Phenylenebis(azanediyl)]bis(1-oxoprop-2-ene-1,2-diyl))dicarbamate (5c) 1H NMR (400 MHz, DMSO-d 6): δ = 9.69 (2 H, s), 9.03 (2 H, s), 7.52–7.60 (2 H, m), 7.28–7.44 (10 H, m), 7.18–7.27 (2 H, m), 5.55 (2 H, s), 5.41 (2 H, s), 5.09 (4 H, s) ppm. 13C NMR (100 MHz, DMSO-d 6): δ = 163.10, 153.59, 137.25, 136.36, 130.52, 128.39, 128.00, 127.92, 125.50, 125.26, 104.74, 66.02 ppm. FTIR (KBr): 3306, 1732, 1704, 1660, 1628, 1501, 1453, 1241, 1077, 751, 697 cm–1. HRMS (ESI): m/z calcd for C28H26N4O6Na [M + Na]+: 537.1745; found: 537.1768. 14 The reaction of 4a with 4-methylmolpholine hydrochloride in CH2Cl2 led to no reaction. Additionally, no cyclized form was also obtained from 4a under toluene reflux conditions. 15a Naidu BN. Sorenson ME. Connolly TP. Ueda Y. J. Org. Chem. 2003; 68: 10098 15b Chakor NS. Musso L. Dallavalle S. J. Org. Chem. 2009; 74: 844 15c Manzoni L. Belvisi L. Scolastico C. Synlett 2000; 1287 15d Le DN. Riedel J. Kozlyuk N. Martin RW. Dong VM. Org. Lett. 2017; 19: 114 15e Donohoe TJ. Jones CR. Barbosa LC. A. J. Am. Chem. Soc. 2011; 133: 16418 16 Two doublets (δ = 6.80 and 6.18 ppm, J = 1.0 Hz) appeared in the 1H NMR spectrum (CDCl3) of the reaction solution after the addition of ClCO2 i-Pr and 4-methylmorpholine. This indicates that the vinyl proton of dehydroalanine was generated. Similar signals were observed when other alkyl chloroformates were used. 17 Reaction of 2a with N,N-Phth-serine Using ClCO2 i-Pr To a solution of N,N-Phth-serine (1.63 g, 6.93 mmol) and 4-methylmorpholine (1.53 mL, 13.9 mmol) in CH2Cl2 under an argon atmosphere at –20 °C was added ClCO2 i-Pr (1.70 g, 13.9 mmol) and 4-methylmorpholine (0.762 mL, 6.93 mmol), followed by stirring for 0.5 h. Compound 2a (500 mg, 4.62 mmol) was added to the mixture, followed by stirring at room temperature for 0.5 h. The precipitate was filtered and washed with CH2Cl2. EtOH was added to the residue and stirred for 0.5 h. The precipitate was filtered and washed with EtOH to give 3a (1.01 g, 3.29 mmol, 71% yield) as a yellow solid. 18 1-Methyl-3-phthalimido-1,5-benzodiazepine-2-one (3ab) 1H NMR (400 MHz, DMSO-d 6): δ = 7.85–7.93 (4 H, m), 7.31 (1 H, dd, J = 7.9, 1.3 Hz), 7.12 (1 H, td, J = 7.9, 1.3 Hz), 7.02 (1 H, dd, J = 7.9, 1.5 Hz), 6.98 (1 H, td, J = 7.9, 1.5 Hz), 5.62 (1 H, d, J = 5.7 Hz), 4.93 (1 H, dd, J = 11.4, 5.7 Hz), 4.59 (1 H, t, J = 11.4 Hz), 3.73 (1 H, dt, J = 11.4, 5.7 Hz), 3.25 (3 H, s) ppm. 13C NMR (100 MHz, DMSO-d 6): δ = 167.60, 140.63, 134.82, 132.92, 131.19, 126.66, 123.33, 123.29, 121.15, 51.06, 49.75, 36.08 ppm. FTIR (KBr): 3363, 1777, 1718, 1678, 1508, 1384, 1339, 1285, 1129, 1114, 753, 718 cm–1. HRMS (ESI): m/z calcd for C18H15N3O3Na [M + Na]+: 344.1006; found: 344.1000. 5-Methyl-3-phthalimido-1,5-benzodiazepine-2-one (3ab′) 1H NMR (400 MHz, DMSO-d 6): δ = 10.1 (1 H, s), 7.85–7.95 (4 H, m), 7.16 (1 H, td, J = 8.1, 1.6 Hz), 7.12 (1 H, dd, J = 8.1, 1.6 Hz), 7.07 (1 H, dd, J = 8.1, 1.6 Hz), 7.00 (1 H, td, J = 8.1, 1.6 Hz), 4.82 (1 H, dd, J = 11.1, 6.5 Hz), 4.41 (1 H, t, J = 11.1 Hz), 3.39 (1 H, dd, J = 11.1, 6.5 Hz), 2.85 (3 H, s) ppm. 13C NMR (100 MHz, DMSO-d 6): δ = 167.89, 167.47, 141.75, 134.87, 131.16, 130.98, 125.42, 123.36, 122.01, 121.69, 119.09, 56.82, 50.68, 41.15 ppm. FTIR (KBr): 2916, 1723, 1680, 1505, 1379, 879, 717 cm–1. HRMS (ESI): m/z calcd for C18H15N3O3Na [M + Na]+: 344.1006; found: 344.0962. 19 1,5-Dimethyl-3-phthalimido-1,5-benzodiazepine-2-one (3ac) 1H NMR (400 MHz, DMSO-d 6): δ = 7.85–7.93 (4 H, m), 7.42 (1 H, dd, J = 7.9, 1.5 Hz), 7.32 (1 H, td, J = 7.9, 1.5 Hz), 7.24 (1 H, dd, J = 7.9, 1.5 Hz), 7.20 (1 H, td, J = 7.9, 1.5 Hz), 4.79 (1 H, dd, J = 12.4, 6.7 Hz), 4.71 (1 H, dd, J = 12.4, 8.9 Hz), 3.20–3.28 (4 H, m), 2.80 (3 H, s) ppm. 13C NMR (100 MHz, DMSO-d 6): δ = 167.55, 166.97, 142.81, 136.58, 134.86, 131.05, 127.09, 123.46, 123.30, 122.98, 119.86, 58.04, 50.60, 40.89, 35.75 ppm. FTIR (KBr): 2946, 1718, 1670, 1503, 1387, 1349, 1275, 1123, 877, 760, 720, 519 cm–1. HRMS (ESI): m/z calcd for C19H17N3O3Na [M + Na]+: 358.1162; found: 358.1170. 20 Hugenberg V. Fröhlich R. Haufe G. Org. Biomol. Chem. 2010; 8: 5682 Supplementary Material Supplementary Material Supporting Information