Synthesis 2018; 50(18): 3723-3730
DOI: 10.1055/s-0037-1610439
paper
© Georg Thieme Verlag Stuttgart · New York

Regioselective Synthesis of Dihydro-1H-furo[b]indol-1-ones and Their Carbanionic Reactivity

Supriti Jana
Department of Chemistry, Indian Institute of Technology Kharagpur, 721302 India, Email: dmal@chem.iitkgp.ernet.in
,
Mausumi Bandyopadhyay
Department of Chemistry, Indian Institute of Technology Kharagpur, 721302 India, Email: dmal@chem.iitkgp.ernet.in
,
Department of Chemistry, Indian Institute of Technology Kharagpur, 721302 India, Email: dmal@chem.iitkgp.ernet.in
› Author Affiliations
We gratefully acknowledge the Council of Science & Industrial Research, New Delhi, India for financial support. S.J. is thankful to IIT KHARAGPUR for her research fellowship and contingency grant. We are also thankful to the DST-FIST for financial support for establishing an NMR facility.
Further Information

Publication History

Received: 23 April 2018

Accepted after revision: 28 May 2018

Publication Date:
10 July 2018 (online)


Abstract

A general synthesis of 3,4-dihydro-1H-furo[b]indol-1-ones, representing a furanone-fused pyrrole unit, has been developed. The dehydrohalogenative cyclization of 4-aminofuranones was achieved by reaction with Pd(OAc)2 and DABCO in DMF. The corresponding N-protected indolones undergo alkylation at C3.

Supporting Information

 
  • References

    • 2a Yoganathan K. Rossant C. Ng S. Huang Y. Butler MS. Buss AD. J. Nat. Prod. 2003; 66: 1116
    • 2b Zhou J. Gupta K. Yao J. Ye K. Panda D. Giannakakaou P. Joshi HC. J. Biol. Chem. 2002; 277: 39777
    • 2c Shode FO. Mahomed AS. Rogers CB. Phytochemistry 2002; 61: 955
    • 2d Holler U. Gloer JB. Wicklow DT. J. Nat. Prod. 2002; 65: 876
    • 2e Arnone A. Assante G. Nasini G. Strada S. Vercesi A. J. Nat. Prod. 2002; 65: 48
    • 2f Palermo JA. Rodriguez B. Maria F. Spagnuolo C. Seldes AM. J. Org. Chem. 2000; 65: 4482
    • 2g Brady SF. Wagenaar MM. Singh MP. Janso JE. Clardy J. Org. Lett. 2000; 2: 4043
    • 3a DeShong P. Sidler DR. J. Org. Chem. 1985; 50: 2309
    • 3b Vegh D. Morel J. Decroix B. Zalupsky P. Synth. Commun. 1992; 22: 2057
    • 3c Acerbi A. Carfagna C. Costa M. Mancuso R. Gabriele B. Della CaN. Chem. Eur. J. 2018; 24: 4835
    • 4a Mal D. Senapati BK. Pahari P. Tetrahedron 2007; 63: 3768
    • 4b Jana A. Mal D. Chem. Commun. 2010; 46: 4411
    • 4c Roy J. Mal D. Eur. J. Org. Chem. 2014; 1873
  • 5 Gelin S. Pollet P. J. Heterocycl. Chem. 1979; 16: 505
  • 6 The reaction of 7 with 8 was carried out with the aim of increasing the yield of Fischer indole product 6, but interestingly pyrazole 9a′ was also obtained. For further structure confirmation, pyrazole 9a′ was oxidized to aldehyde 9b′. Pyrazole 9a′ was obtained in 55% yield when furanone 9 was treated with PTSA in refluxing ethanol (see experimental section).
  • 7 The structure of compound 10 was further confirmed by synthesis of the N-acetyl-protected compound 10a′ and the N,N-dimethyl derivative 10b′ (see experimental section).
  • 8 The structure of compound 12 was further confirmed by oxidation of its primary alcohol to give aldehyde derivative 12a′ (see experimental section).
  • 9 Momose T. Toyooka N. Nishi T. Takeuchi Y. Heterocycles 1988; 27: 1907
    • 10a Wurtz S. Rakshit S. Neumann JJ. Droge T. Florius F. Angew. Chem. Int. Ed. 2008; 47: 7230
    • 10b He Z. Li H. Li Z. J. Org. Chem. 2010; 75: 4636
  • 11 Several reagents were examined for the oxidative cyclization of 14; however, the desired cyclized product, furoindolone 6, was not furnished: either starting material (SM) was recovered or an intractable reaction mixture (IRM) was obtained. We tried the following combinations: Cu(OAc)2·H2O/Pd(OAc)2, K2CO3, DMF, 80 °C (SM recovered); PdCl2(PPh3)2, TEA, DMF, 110 °C (SM recovered); I2, K2CO3, DMF, 100 °C (SM recovered); Ag2O/Pd(OAc)2, KOAc, DMF, 140 °C (IRM); PPh3/Pd2(dba)3/ Cu(OAc)2·H2O, TEA, DMF, 140 °C (IRM); I2, K2CO3, DMF, 100–140 °C (IRM).
  • 12 We tried the dehydrohalogenative cyclization of 15 with the following combinations: Cu(OAc)2, Cs2CO3, DMF, 125 °C; TBAB/Pd(OAc)2, K2CO3, DMF, 100 °C; CuI, Cs2CO3, DMF, 125 °C; PdCl2(PPh3)2, Cs2CO3, 1,4-dioxane, 100 °C; Pd(PPh3)4, TEA, DMF, 140 °C; PPh3/Pd2(dba)3, K3PO4, toluene, 120 °C; AcOH/Pd(OAc)2, 140 °C; LiCl/Pd(PPh3)4, Na2CO3, MeCN, 140 °C; LiCl, PPh3/Pd(OAc)2, K2CO3, DMF, 140 °C; PdCl2(PPh3)2, TEA, DMF, 110 °C.
  • 13 Cunha S. Oliveira CC. Sabino JR. J. Braz. Chem. Soc. 2011; 22: 598
    • 14a Nguyen HH. Kurth MJ. Org. Lett. 2013; 15: 362
    • 14b Ramkumar N. Nagarajan R. J. Org. Chem. 2013; 78: 2802
    • 14c Bernal P. Tamariz J. Helv. Chim. Acta 2007; 90: 1449
    • 15a Chen C. Lieberman DR. Larsen RD. Verhoeven TR. Reider PJ. J. Org. Chem. 1997; 62: 2676
    • 15b Sorensen US. Pombo-Villar E. Helv. Chim. Acta 2004; 87: 82
  • 16 Iida H. Yuasa Y. Kibayashi C. J. Org. Chem. 1980; 45: 2938
    • 17a Ishida T. Kikuchi S. Tsubo T. Yamada T. Org. Lett. 2013; 15: 848
    • 17b Roman DS. Takahashi Y. Charette AB. Org. Lett. 2011; 13: 3242
  • 18 Mal D. Anionic Annulations in Organic Synthesis. 2019. Elsevier;