RSS-Feed abonnieren
DOI: 10.1055/s-0037-1611058
Selective Conversion of CO2 and Switchable Alcohols into Linear or Cyclic Carbonates via Versatile Zinc Catalysis
Autor*innen
Financial support from the National Natural Science Foundation of China (21602232) and the Natural Science Foundation of Shanxi Province (201701D221057) are gratefully acknowledged.
Publikationsverlauf
Received: 26. Juli 2018
Accepted after revision: 07. September 2018
Publikationsdatum:
27. September 2018 (online)

Abstract
It is promising and challenging to achieve the effective construction of carbonates using CO2 and a non-noble metal catalyst. Herein, selective catalytic conversion of CO2 and switchable alcohol candidates to produce linear or cyclic carbonates and α-hydroxy ketones via effective zinc catalyst was developed. A series of primary alcohols and cyclohexanol, 1,2-diols, and water can serve as nucleophiles to give alkyl or aryl 2-substituted-3-oxobutan-2-yl carbonates, substituted 1,3-dioxolan-2-ones, 3-substituted 3-hydroxybutan-2-ones, respectively with excellent selectivity and high yields.
Key words
carbon dioxide utilization - carbonates - zinc catalysis - multicomponent reaction - synthetic methodsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611058.
- Supporting Information (PDF) (opens in new window)
-
References
- 1a Yang Z.-Z, He L.-N, Gao J, Liu A.-H, Yu B. Energy Environ. Sci. 2012; 5: 6602
- 1b Aresta M, Dibenedetto A, Angelini A. Chem. Rev. 2014; 114: 1709
- 1c Liu Q, Wu L, Jackstell R, Beller M. Nat. Commun. 2015; 6: 5933
- 1d He M, Sun Y, Han B. Angew. Chem. Int. Ed. 2013; 52: 9620
- 1e Wang WH, Himeda Y, Muckerman JT, Manbeck GF, Fujita E. Chem. Rev. 2015; 115: 12936
- 1f Song Q.-W, Zhou Z.-H, He L.-N. Green Chem. 2017; 19: 3707
- 1g Zhang Q, Yuan H.-Y, Fukaya N, Yasuda H, Choi J.-C. Green Chem. 2017; 19: 5614
- 2a Lu X.-B, Darensbourg DJ. Chem. Soc. Rev. 2012; 41: 1462
- 2b Zhang H, Liu H.-B, Yue J.-M. Chem. Rev. 2014; 114: 883
- 2c Schäffner B, Schäffner F, Verevkin SP, Börner A. Chem. Rev. 2010; 110: 4554
- 2d Martín C, Fiorani G, Kleij AW. ACS Catal. 2015; 5: 1353
- 2e Shaikh RR, Pornpraprom S, D’Elia V. ACS Catal. 2018; 8: 419
- 2f Büttner H, Longwitz L, Steinbauer J, Wulf C, Werner T. Top. Curr. Chem. 2017; 375: 50
- 3a Lang X.-D, He L.-N. Chem. Rec. 2016; 16: 1337
- 3b Parker HL, Sherwood J, Hunt AJ, Clark JH. ACS Sustainable Chem. Eng. 2014; 2: 1739
- 3c Sathish M, Sreeram KJ, Rao JR, Nair BU. ACS Sustainable Chem. Eng. 2016; 4: 1032
- 3d Sonnati MO, Amigoni S, de Givenchy EP. T, Darmanin T, Choulet O, Guittard F. Green Chem. 2013; 15: 283
- 4a Shaikh AA. G, Sivaram S. Chem. Rev. 1996; 96: 951
- 4b Song JL, Zhang BB, Wu TB, Yang GY, Han BX. Green Chem. 2011; 13: 922
- 4c Huang S, Yan B, Wang S, Ma X. Chem. Soc. Rev. 2015; 44: 3079
- 5a Trost BM, Xu J, Reichle M. J. Am. Chem. Soc. 2007; 129: 282
- 5b Sun N, Chen M, Liu Y. J. Org. Chem. 2014; 79: 4055
- 5c Stainforth NE, Cutting GA, John MP, Willis MC. Tetrahedron: Asymmetry 2009; 20: 741
- 6 Gennen S, Grignard B, Tassaing T, Jérôme C, Detrembleur C. Angew. Chem. Int. Ed. 2017; 56: 10394
- 7a Cá ND, Gabriele B, Ruffolo G, Veltri L, Zanetta T, Costa M. Adv. Synth. Catal. 2011; 353: 133
- 7b Zhou ZH, Song QW, Xie JN, Ma R, He LN. Chem. Asian J. 2016; 11: 2065
- 7c Hu JY, Ma J, Lu L, Qian QL, Zhang ZF, Xie C, Han BX. ChemSusChem 2017; 10: 1292
- 8a Peña-López M, Neumann H, Beller M. Eur. J. Org. Chem. 2016; 3721
- 8b Cuesta-Aluja L, Masdeu-Bultó AM. ChemSelect 2016; 1: 2065
- 8c Buonerba A, De Nisi A, Grassi A, Milione S, Capacchione C, Vagin S, Rieger B. Catal. Sci. Technol. 2015; 5: 118
- 9a Shen Y.-M, Duan W.-L, Shi M. J. Org. Chem. 2003; 68: 1559
- 9b Ghosh A, Ramidi P, Pulla S, Sullivan SZ, Collom SL, Gartia Y, Munshi P, Biris AS, Noll BC, Berry BC. Catal. Lett. 2010; 137: 1
- 9c Paddock RL, Hiyama Y, McKay JM, Nguyen ST. Tetrahedron Lett. 2004; 45: 2023
- 10a Wang X, Liu Y, Martin R. J. Am. Chem. Soc. 2015; 137: 6476
- 10b Moragas T, Gaydou M, Martin R. Angew. Chem. Int. Ed. 2016; 55: 5053
- 10c Ninokata R, Yamahira T, Onodera G, Kimura M. Angew. Chem. Int. Ed. 2017; 56: 208
- 11a Ma R, He L.-N, Zhou Y.-B. Green Chem. 2016; 18: 226
- 11b Li F, Xiao L, Xia C, Hu B. Tetrahedron Lett. 2004; 45: 8307
- 11c Cuesta-Aluja L, Campos-Carrasco A, Castilla J, Reguero M, Masdeu-Bultó AM, Aghmiz A. J. CO2 Util. 2016; 14: 10
- 11d Mercadé E, Zangrando E, Claver C, Godard C. ChemCatChem 2016; 8: 234
- 11e Hu JY, Ma J, Zhu QG, Qian QL, Han HL, Mei QQ, Han BX. Green Chem. 2016; 18: 382
- 11f Liu X, Wang M.-Y, Wang S.-Y, Wang Q, He L.-N. ChemSusChem 2017; 10: 1210
- 11g Zhang Q, Yuan H.-Y, Fukaya N, Yasuda H, Choi J.-C. ChemSusChem 2017; 10: 1501
- 11h Desens W, Kohrt C, Spannenberga A, Werner T. Org. Chem. Front. 2016; 3: 156
- 12 Song Q.-W, Chen W.-Q, Ma R, Yu A, Li Q.-Y, Chang Y, He L.-N. ChemSusChem 2015; 8: 821
- 13 Zhou Z.-H, Song Q.-W, He L.-N. ACS Omega 2017; 2: 337
- 14 Hoyos P, Sinisterra J.-V, Molinari F, Alcántara AR, de María PD. Acc. Chem. Res. 2010; 43: 288
- 15 He H, Qi C, Hu X, Guan Y, Jiang H. Green Chem. 2014; 16: 3729
- 16 Zhao Y, Yang Z, Yu B, Zhang H, Xu H, Hao L, Han B, Liu Z. Chem. Sci. 2015; 6: 2297
For selected reviews, see:
For selected examples, see:
For selected examples of Fe catalysis, see:
For selected examples of Co catalysis, see:
For selected examples of Ni catalysis, see:
For selected examples of Zn catalysis, see: