Synthesis 2020; 52(01): 69-74
DOI: 10.1055/s-0039-1690712
paper
© Georg Thieme Verlag Stuttgart · New York

Chlorination of Arylaldehyde-Derived Arylsulfonylhydrazones with N-Chlorosuccinimide Leading to 1,2,4,5-Tetrazine Derivatives

Yuan-Zhao Ji
a   School of Marine Science and Technology, Harbin Institute of Technology, 2 Wenhuaxi Road, Weihai 264209, P. R. of China
,
Hui-Jing Li
a   School of Marine Science and Technology, Harbin Institute of Technology, 2 Wenhuaxi Road, Weihai 264209, P. R. of China
b   Weihai Institute of Marine Biomedical Industrial Technology, Wendeng District, Weihai 264400, P. R. of China   Email: lihuijing@iccas.ac.cn   Email: ycwu@iccas.ac.cn
,
Ying Liu
a   School of Marine Science and Technology, Harbin Institute of Technology, 2 Wenhuaxi Road, Weihai 264209, P. R. of China
b   Weihai Institute of Marine Biomedical Industrial Technology, Wendeng District, Weihai 264400, P. R. of China   Email: lihuijing@iccas.ac.cn   Email: ycwu@iccas.ac.cn
,
Yan-Chao Wu
a   School of Marine Science and Technology, Harbin Institute of Technology, 2 Wenhuaxi Road, Weihai 264209, P. R. of China
b   Weihai Institute of Marine Biomedical Industrial Technology, Wendeng District, Weihai 264400, P. R. of China   Email: lihuijing@iccas.ac.cn   Email: ycwu@iccas.ac.cn
› Author Affiliations
This work was supported by the Key Research and Development Program of Shandong Province (2019GSF108089), the Natural Science Foundation of Shandong Province (ZR2019MB009), the National Natural Science Foundation of China (21672046, 21372054), and with funding from the Huancui District of Weihai City.
Further Information

Publication History

Received: 21 July 2019

Accepted after revision: 24 September 2019

Publication Date:
14 October 2019 (online)

 


Abstract

It has been reported previously that treatment of aryl­ketone-derived arylsulfonylhydrazones with NXS/(nBu)4NX affords exclusively vinyl halides. In contrast, we have found that treatment of aryl­aldehyde-derived arylsulfonylhydrazones with N-chlorosuccinimide in the presence of potassium hydroxide affords 1,2,4,5-tetrazine derivatives in good to excellent yields. The present reactions are carried out under metal-free and mild reaction conditions.


#

1,2,4,5-Tetrazine derivatives are versatile aromatic heterocycles[1] that have been applied in organic electronics [e.g., organic photovoltaic (OPV) devices, organic field-effect transistors (OFETs)],[2] energetic materials,[3] coordination chemistry,[4] electrofluorochromism,[5] and in the synthesis of biologically active molecules.[6] Recently, 1,2,4,5-tetrazines have also attracted a fair amount of attention in life sciences, with applications in cell imaging, DNA labelling, etc.[7] In general, 1,2,4,5-tetrazines are synthesized predominantly by the reaction of hydrazine with aromatic nitriles, followed by oxidation of the generated 1,2-dihydrotetrazines.[8] In addition, further modification of 1,2,4,5-tetrazines has also emerged as a useful tool.[9]

On the other hand, arylsulfonylhydrazones are key building blocks in synthetic chemistry,[10] [11] especially for the synthesis of nitrogen-containing heterocycles.[12] In 2015, Prabhu and Ojha[13] reported an elegant synthesis of vinyl halides from arylketone-derived N-tosylhydrazones using NXS/(nBu)4NX, in which dihalides were the proposed reaction intermediates (Scheme [1]). Herein, we report a facile synthesis of 1,2,4,5-tetrazine derivatives from arylaldehyde-derived arylsulfonylhydrazones in the presence of NCS and KOH under metal-free conditions (Scheme [1]). The discovery of this 1,2,4,5-tetrazine synthetic protocol was somewhat unexpected. It began with our attempts to synthesize dichlorides from arylaldehyde-derived arylsulfonylhydrazones using Prabhu’s conditions. Regrettably, the chlorination reaction did not afford the desired dichlorides; instead, 1,2,4,5-tetrazines were unexpectedly obtained. Considering the importance of 1,2,4,5-tetrazine derivatives in chemical, biological, and environmental sciences,[1] [2] [3] [4] [5] [6] [7] we decided to study this process further by optimizing the reaction conditions for the synthesis of 1,2,4,5-tetrazines.

Zoom Image
Scheme 1 Synthetic applications of arylsulfonylhydrazones

Table 1 Optimization of the Reaction Conditionsa

Entry

Promoter (equiv)

Solvent

Base (equiv)

Yield (%)b

 1c

NBS (1.5)

1,4-dioxane

K2CO3 (3.0)

19

 2

NBS (1.5)

1,4-dioxane

K2CO3 (3.0)

19

 3

NCS (1.5)

1,4-dioxane

K2CO3 (3.0)

63

 4

NIS (1.5)

1,4-dioxane

K2CO3 (3.0)

10

 5

I2 (1.5)

1,4-dioxane

K2CO3 (3.0)

25

 6

NCS (1.5)

CH3CN

K2CO3 (3.0)

40

 7

NCS (1.5)

THF

K2CO3 (3.0)

10

 8

NCS (1.5)

CH2Cl2

K2CO3 (3.0)

25

 9

NCS (1.5)

CH3NO2

K2CO3 (3.0)

65

10

none

CH3NO2

K2CO3 (3.0)

 0

11

NCS (0.5)

CH3NO2

K2CO3 (3.0)

 9

12

NCS (1.0)

CH3NO2

K2CO3 (3.0)

44

13

NCS (2.0)

CH3NO2

K2CO3 (3.0)

72

14

NCS (2.5)

CH3NO2

K2CO3 (3.0)

72

15

NCS (2.0)

CH3NO2

Na2CO3 (3.0)

67

16

NCS (2.0)

CH3NO2

Cs2CO3 (3.0)

69

17

NCS (2.0)

CH3NO2

Li2CO3 (3.0)

44

18

NCS (2.0)

CH3NO2

KOH (3.0)

78

19

NCS (2.0)

CH3NO2

K3PO4 (3.0)

50

20

NCS (2.0)

CH3NO2

Et3N (3.0)

 0

21

NCS (2.0)

CH3NO2

DMAP (3.0)

 0

22

NCS (2.0)

CH3NO2

none

31

23

NCS (2.0)

CH3NO2

KOH (0.5)

44

24

NCS (2.0)

CH3NO2

KOH (1.0)

78

25

NCS (2.0)

CH3NO2

KOH (2.0)

78

26d

NCS (2.0)

CH3NO2

KOH (1.0)

88

27d,e

NCS (2.0)

CH3NO2

KOH (1.0)

85

a Reaction conditions: 1a (0.2 mmol), promoter (0–0.5 mmol), base (0–0.6 mmol), solvent (1.0 mL), 25 °C, 3 h.

b Yield of isolated product.

c (nBu)4NBr (0.6 mmol) was used.

d Reaction was performed at 0 °C.

e Reaction was carried out on a 1.28 g scale of 1a (4.0 mmol).

4-Nitrobenzaldehyde N-tosylhydrazone (1a) was selected as a model substrate for optimizing the reaction conditions (Table [1]). Following Prabhu’s procedure [NBS (1.5 equiv), (nBu)4NBr (3 equiv), K2CO3 (3.0 equiv), 1,4-dioxane],[13] treatment of 4-nitrobenzaldehyde N-tosylhydrazone (1a) at 25 °C for 3 hours did not afford the corresponding benzyl dihalide. Instead, 3,6-bis(4-nitrophenyl)-1,4-ditosyl-1,4-dihydro-1,2,4,5-tetrazine (2a) was obtained, albeit in only 19% yield (entry 1). The reaction proceeded uneventfully in the absence of TBAB (entries 1 and 2). Promoters such as N-chlorosuccinimide (NCS), N-iodosuccinimide (NIS) and iodine (I2) could be used for this reaction, but NCS gave the best yield (entries 2–5). Various solvents including CH3NO2, CH3CN, THF, CH2Cl2 and 1,4-dioxane were also investigated­, among which CH3NO2 was the best (entries 3 and 6–9). The reaction did not work without NCS, and the reaction with N-tosylhydrazone 1a afforded a higher yield when using the 2.0 equivalents of NCS (entries 9–14). The choice of base was also important for this reaction. The reaction could be achieved with various inorganic bases such as Na2CO3, Cs2CO3, Li2CO3, KOH and K3PO4 (entries 15–19). However, KOH was selected for our further studies because it displayed the best efficiency (entries 13 and 15–19).

Zoom Image
Scheme 2 Synthesis of 1,2,4,5-tetrazines 2ap. General conditions: 1 (0.2 mmol), NCS (0.4 mmol), KOH (0.2 mmol), CH3NO2 (1.0 mL), 0 °C, 3 h.

On using organic bases, such as Et3N and DMAP, no reaction occurred and the starting materials were recovered (Table [1], entries 20 and 21). The yield of 1,2,4,5-tetrazine 2a decreased when the loading of KOH was less than 1.0 equivalent (entries 18 and 22–25). The effect of different temperatures was investigated and the reaction at 0 °C was found to give 1,2,4,5-tetrazine 2a in a higher yield (entries 24 and 26). Furthermore, a large-scale reaction using 4-nitrobenzaldehyde N-tosylhydrazone (1a) (1.28 g) also gave an excellent yield of the corresponding 1,2,4,5-tetrazine 2a (entry 27).

Having optimized the reaction conditions, the scope of the reaction with arylaldehyde-derived arylsulfonylhydrazones was subsequently explored and the results are compiled in Scheme [2]. A wide range of N-tosylhydrazones, with either hydrogen atoms, electron-withdrawing groups or electron-donating groups at the ortho, meta or para positions of their aromatic rings, reacted smoothly in the presence of NCS (2.0 equiv) and KOH (1.0 equiv) at 0 °C to afford 1,2,4,5-tetrazines 2am in moderate to excellent yields within 3 hours. Arylsulfonylhydrazones derived from methoxy- and methyl-substituted benzenesulfonyl hydrazides reacted under the optimized conditions to generate 1,2,4,5-tetrazines 2np in good yields. The structures of these 1,2,4,5-tetrazines were determined from their NMR spectra and by X-ray crystallographic analysis of 1,2,4,5-tetrazines 2c and 2e (Figure [1]).[14]

Zoom Image
Figure 1 X-ray crystal structures of 1,2,4,5-tetrazines 2c and 2e [14]
Zoom Image
Scheme 3 Proposed mechanism involving the chlorination of N-tosylhydrazones 1 and the formation of 1,2,4,5-tetrazines 2

A possible reaction mechanism for the NCS-mediated chlorination of N-tosylhydrazones 1 is illustrated in Scheme [3]. Initially, the NCS-mediated chlorination of arylaldehyde-derived N-tosylhydrazones 1 could lead to compounds 3. The three electron-withdrawing functionalities, i.e., the N=N double bond, the chlorine and the aromatic substituents, make the hydrogen on the α-carbon very acidic. Therefore, removal of this hydrogen from 3 in the presence of the base KOH would take place to provide the anions 4, and thereby obviating the formation of dichlorides via the reaction of 3 with a chlorine anion. The double intermolecular azacyclization reaction of 4 may subsequently lead to dianions 5. Finally, removal of the two chlorine anions from intermediate 5 affords the corresponding 1,2,4,5-tetrazines 2.

According to the literature,[9d] 3,6-disubstituted-1,2,4,5-tetrazines 6 can be synthesized via deprotection and aromatization of 1,4-dihydro-3,6-disubstituted-1,4-bis(arylsulfonyl)-1,2,4,5-tetrazines 2. For example, following Wei’s procedure [TBAF (1.1 equiv), EtOH, reflux],[9d] the reaction of 3,6-bis(4-nitrophenyl)-1,4-ditosyl-1,4-dihydro-1,2,4,5-tetrazine (2a) afforded 3,6-bis(4-nitrophenyl)-1,2,4,5-tetrazine (6a) in 92% yield (Scheme [4]).

Zoom Image
Scheme 4 Deprotection/aromatization of 3,6-bis(4-nitrophenyl)-1,4-ditosyl-1,4-dihydro-1,2,4,5-tetrazine (2a)

In summary, we have developed a facile method for the synthesis of 1,2,4,5-tetrazines which proceeds via NCS-mediated chlorination of arylaldehyde-derived N-tosylhydrazones. The reactions take place under metal-free conditions and tolerate a wide range of hydrazone substrates to afford the corresponding 1,2,4,5-tetrazines in good to excellent isolated yields. Furthermore, the reported procedure for the preparation of 1,2,4,5-tetrazines and the synthesis of vinyl halides described by Prabhu[13] enrich the reaction diversity. Studies on the further applications of this method are ongoing in our laboratory.

Reagents and solvents were obtained from commercial sources and no further purification was required. The products were purified by column chromatography on Yantai Xinnuo silica gel (200-300 meshs). Melting points were recorded on a Gongyi X-5 microscopy digital melting point apparatus and are uncorrected. IR spectra were measured on an Electrothemal Nicolet 380 spectrophotometer. 1H and 13C NMR spectra were recorded on a Bruker Avance III 400 MHz NMR spectrometer. All signals for protons are recorded in ppm using the residual NMR solvent signal as an internal reference (CDCl3, 7.26 ppm). All signals for carbon resonances are recorded in ppm using the residual NMR solvent signal as an internal reference (CDCl3, 77.0ppm). High-resolution mass spectrometry (HRMS) were performed using an Electrothemal LTQ-Orbitrap mass spectrometer.


#

1,2,4,5-Tetrazines; General Procedure

A mixture of arylaldehyde-derived arylsulfonylhydrazone 1 (1 equiv, 0.2 mmol), NCS (2 equiv, 0.4 mmol) and KOH (1 equiv, 0.2 mmol) in CH3NO2 (1.0 mL) was stirred at 0 °C for 3 h. After completion of the reaction, H2O (5 mL) and EtOAc (10 mL) were added and the aqueous phase was extracted with EtOAc (3 × 10 mL). The combined organic extracts were dried over anhydrous Na2SO4 and concentrated under vacuum. Purification of the crude residue by flash chromatography on silica gel gave the corresponding 1,2,4,5-tetrazine 2.


#

3,6-Bis(4-nitrophenyl)-1,4-ditosyl-1,4-dihydro-1,2,4,5-tetrazine (2a)

Yield: 55.8 mg (88%); yellow solid; mp 101–103 °C.

IR (film): 2925, 2854, 1595, 1525, 2332, 1174, 855, 605 cm–1.

1H NMR (400 MHz, CDCl3): δ = 8.27 (d, J = 8.7 Hz, 4 H), 7.75 (d, J = 8.3 Hz, 4 H), 7.66 (d, J = 8.7 Hz, 4 H), 7.42 (d, J = 8.2 Hz, 4 H), 2.51 (s, 6 H).

13C NMR (100 MHz, CDCl3): δ = 152.2, 149.6, 146.5, 135.6, 133.5, 130.0, 129.7, 128.6, 123.5, 21.8.

HRMS (ESI): m/z [M + H]+ calcd for C28H23N6O8S2: 635.1013; found: 635.1017.


#

1,4-Ditosyl-3,6-bis[4-(trifluoromethyl)phenyl]-1,4-dihydro-1,2,4,5-tetrazine (2b)

Yield: 34.7 mg (51%); white solid; mp 103–105 °C.

IR (film): 2854, 1595, 1409, 1321, 1175, 843, 597 cm–1.

1H NMR (400 MHz, CDCl3): δ = 7.74 (d, J = 8.2 Hz, 4 H), 7.68 (d, J = 8.3 Hz, 4 H), 7.61 (d, J = 8.2 Hz, 4 H), 7.39 (d, J = 8.1 Hz, 4 H), 2.50 (s, 6 H).

13C NMR (100 MHz, CDCl3): δ = 153.1, 146.2, 133.9, 133.4 (q, J C–F = 33.3 Hz, 2 C), 133.2, 129.9, 129.2, 128.6, 125.3 (q, J C–F = 3.5 Hz, 2 C), 123.6 (q, J C–F = 272.7 Hz, 2 C), 21.8.

HRMS (ESI): m/z [M + H]+ calcd for C30H23F6N4O4S2: 681.1059; found: 681.1066.


#

3,6-Bis(4-fluorophenyl)-1,4-ditosyl-1,4-dihydro-1,2,4,5-tetrazine (2c)

Yield: 41.8 mg (72%); yellow solid; mp 99–101 °C.

IR (film): 3071, 2924, 2852, 1602, 1508, 1375, 1175, 841, 667, 586 cm–1.

1H NMR (400 MHz, CDCl3): δ = 7.76 (d, J = 8.2 Hz, 4 H), 7.52 (dd, J = 8.6 Hz, 5.3 Hz, 4 H), 7.38 (d, J = 8.2 Hz, 4 H), 7.10 (t, J = 8.5 Hz, 4 H), 2.48 (s, 6 H).

13C NMR (100 MHz, CDCl3): δ = 164.7 (d, J C–F = 253.1 Hz, 2 C), 153.9, 145.8, 134.2, 131.0 (d, J C–F = 8.9 Hz, 2 C), 129.7, 128.4, 125.7 (d, J C–F = 3.2 Hz, 2 C), 115.5 (d, J C–F = 22.2 Hz, 2 C), 21.6.

HRMS (ESI): m/z [M + H]+ calcd for C28H23F2N4O4S2: 581.1123; found: 581.1127.


#

3,6-Bis(4-chlorophenyl)-1,4-ditosyl-1,4-dihydro-1,2,4,5-tetrazine (2d)

Yield: 46.5 mg (76%); yellow solid; mp 95–97 °C.

IR (film): 2921, 2850, 2360, 1595, 1375, 1172, 1092, 1013, 833, 661, 560 cm–1.

1H NMR (400 MHz, CDCl3): δ = 7.74 (d, J = 8.3 Hz, 4 H), 7.43 (d, J = 8.6 Hz, 4 H), 7.38 (d, J = 8.7 Hz, 8 H), 2.48 (s, 6 H).

13C NMR (100 MHz, CDCl3): δ = 153.8, 145.9, 138.0, 134.1, 130.1, 129.8, 128.6, 128.5, 128.1, 21.7.

HRMS (ESI): m/z [M + H]+ calcd for C28H23Cl2N4O4S2: 613.0532; found: 613.0536.


#

3,6-Bis(4-bromophenyl)-1,4-ditosyl-1,4-dihydro-1,2,4,5-tetrazine (2e)

Yield: 35.0 mg (50%); white solid; mp 104–106 °C.

IR (film): 2923, 2852, 1592, 1375, 1173, 1074, 1010, 628, 521 cm–1.

1H NMR (400 MHz, CDCl3): δ = 7.74 (d, J = 8.2 Hz, 4 H), 7.54 (d, J = 8.4 Hz, 4 H), 7.36 (t, J = 8.0 Hz, 8 H), 2.48 (s, 6 H).

13C NMR (100 MHz, CDCl3): δ = 153.8, 145.9, 134.1, 131.6, 130.2, 129.8, 128.6, 128.5, 126.4, 21.7.

HRMS (ESI): m/z [M + H]+ calcd for C28H23Br2N4O4S2: 700.9522; found: 700.9526.


#

3,6-Diphenyl-1,4-ditosyl-1,4-dihydro-1,2,4,5-tetrazine (2f)

Yield: 36.5 mg (67%); yellow solid; mp 103–105 °C.

IR (film): 2922, 2850, 1595, 1374, 1331, 1174, 597, 559 cm–1.

1H NMR (400 MHz, CDCl3): δ = 7.76 (d, J = 8.2 Hz, 4 H), 7.53–7.49 (m, 6 H), 7.41 (d, J = 7.2 Hz, 4 H), 7.36 (d, J = 8.2 Hz, 4 H), 2.48 (s, 6 H).

13C NMR (100 MHz, CDCl3): δ = 154.6, 149.1, 145.5, 134.4, 131.5, 129.7, 128.8, 128.6, 128.2, 21.7.

HRMS (ESI): m/z [M + H]+ calcd for C28H25N4O4S2: 545.1312; found: 545.1318.


#

3,6-Di-p-tolyl-1,4-ditosyl-1,4-dihydro-1,2,4,5-tetrazine (2g)

Yield: 27.5 mg (48%); yellow solid; mp 166–168 °C.

IR (film): 2923, 2854, 1596, 1370, 1335, 1174, 817, 668, 589 cm–1.

1H NMR (400 MHz, CDCl3): δ = 7.78 (d, J = 8.3 Hz, 4 H), 7.42 (d, J = 8.0 Hz, 4 H), 7.37 (d, J = 8.1 Hz, 4 H), 7.21 (d, J = 8.0 Hz, 4 H), 2.47 (s, 6 H), 2.41 (s, 6 H).

13C NMR (100 MHz, CDCl3): δ = 154.9, 145.4, 142.0, 134.5, 129.6, 128.9, 128.7, 128.5, 126.8, 21.6, 21.5.

HRMS (ESI): m/z [M + H]+ calcd for C30H29N4O4S2: 573.1625; found: 573.1629.


#

3,6-Bis(4-methoxyphenyl)-1,4-ditosyl-1,4-dihydro-1,2,4,5-tetrazine (2h)

Yield: 30.2 mg (50%); yellow solid; mp 153–155 °C.

IR (film): 2921, 2850, 1607, 1257, 1173, 667, 555 cm–1.

1H NMR (400 MHz, CDCl3): δ = 7.78 (d, J = 8.3 Hz, 4 H), 7.48 (d, J = 8.8 Hz, 4 H), 7.36 (d, J = 8.1 Hz, 4 H), 6.90 (d, J = 8.8 Hz, 4 H), 3.85 (s, 6 H), 2.47 (s, 6 H).

13C NMR (100 MHz, CDCl3): δ = 162.3, 155.1, 145.4, 134.7, 130.5, 129.6, 128.5, 121.8, 113.7, 55.3, 21.7.

HRMS (ESI): m/z [M + H]+ calcd for C30H29N4O6S2: 605.1523; found: 605.1526.


#

3,6-Bis(2-nitrophenyl)-1,4-ditosyl-1,4-dihydro-1,2,4,5-tetrazine (2i)

Yield: 27.3 mg (43%); yellow solid; mp 103–105 °C.

IR (film): 2922, 2851, 1789, 1380, 1176, 761, 673, 563 cm–1.

1H NMR (400 MHz, CDCl3): δ = 7.89 (d, J = 8.3 Hz, 2 H), 7.79 (t, J = 7.8 Hz, 2 H), 7.66 (d, J = 7.8 Hz, 2 H), 7.54 (d, J = 8.0 Hz, 4 H), 7.42 (t, J = 7.5 Hz, 2 H), 7.18 (d, J = 8.0 Hz, 4 H), 2.35 (s, 6 H).

13C NMR (100 MHz, CDCl3): δ = 165.6, 149.6, 146.8, 135.8, 129.8, 129.4, 127.6, 125.8, 116.8, 114.6, 21.7.

HRMS (ESI): m/z [M + H]+ calcd for C28H23N6O8S2: 635.1013; found: 635.1019.


#

3,6-Bis(3-chlorophenyl)-1,4-ditosyl-1,4-dihydro-1,2,4,5-tetrazine (2j)

Yield: 44.7 mg (73%); white solid; mp 98–100 °C.

IR (film): 2922, 2851, 2361, 1377, 1328, 1176, 1089, 797, 666, 597, 560 cm–1.

1H NMR (400 MHz, CDCl3): δ = 7.74 (d, J = 8.2 Hz, 4 H), 7.48 (d, J = 7.8 Hz, 2 H), 7.43–7.35 (m, 10 H), 2.49 (s, 6 H).

13C NMR (100 MHz, CDCl3): δ = 153.2, 146.0, 134.2, 134.0, 131.6, 131.2, 129.9, 129.6, 128.6, 128.5, 127.1, 21.7.

HRMS (ESI): m/z [M + H]+ calcd C28H23Cl2N4O4S2: 613.0532; found: 613.0539.


#

3,6-Bis(2,4-dichlorophenyl)-1,4-ditosyl-1,4-dihydro-1,2,4,5-tetrazine (2k)

Yield: 42.2 mg (62%); white solid; mp 172–174 °C.

IR (film): 3094, 2924, 1596, 1585, 1381, 1175, 1096, 814, 660, 567 cm–1.

1H NMR (400 MHz, CDCl3): δ = 7.51 (d, J = 7.8 Hz, 4 H), 7.41–7.34 (m, 6 H), 7.25 (d, J = 7.7 Hz, 4 H), 2.45 (s, 6 H).

13C NMR (100 MHz, CDCl3): δ = 147.1, 145.6, 137.4, 134.8, 133.5, 133.3, 129.4, 129.3, 128.6, 126.9, 126.6, 21.6.

HRMS (ESI): m/z [M + H]+ calcd for C28H21Cl4N4O4S2: 680.9753; found: 680.9759.


#

3,6-Bis(3,4-dichlorophenyl)-1,4-ditosyl-1,4-dihydro-1,2,4,5-tetrazine (2l)

Yield: 63.3 mg (93%); yellow solid; mp 159–161 °C.

IR (film): 2921, 2850, 1382, 1329, 1174, 814, 662, 565 cm–1.

1H NMR (400 MHz, CDCl3): δ = 7.74 (d, J = 7.8 Hz, 4 H), 7.50 (d, J = 8.3 Hz, 2 H), 7.44–7.35 (m, 8 H), 2.49 (s, 6 H).

13C NMR (100 MHz, CDCl3): δ = 152.6, 146.2, 136.2, 133.8, 132.7, 130.46, 130.40, 130.0, 129.3, 128.5, 127.9, 21.7.

HRMS (ESI): m/z [M + H]+ calcd for C28H21Cl4N4O4S2: 680.9753; found: 680.9757.


#

3,6-Bis(2,3-dichlorophenyl)-1,4-ditosyl-1,4-dihydro-1,2,4,5-tetrazine (2m)

Yield: 46.3 mg (68%); white solid; mp 202–204 °C.

IR (film): 2924, 2853, 1597, 1381, 1177, 1135, 602, 564 cm–1.

1H NMR (400 MHz, CDCl3): δ = 7.59 (d, J = 8.0 Hz, 2 H), 7.50 (d, J = 7.6 Hz, 2 H), 7.36 (d, J = 7.9 Hz, 2 H), 7.32 (d, J = 8.4 Hz, 4 H), 7.16 (d, J = 7.9 Hz, 4 H), 2.41 (s, 6 H).

13C NMR (100 MHz, CDCl3): δ = 146.7, 145.6, 133.2, 132.9, 132.5, 132.3, 131.8, 129.5, 129.3, 128.4, 127.2, 21.6.

HRMS (ESI): m/z [M + H]+ calcd for C28H21Cl4N4O4S2: 680.9753; found: 680.9756.


#

3,6-Bis(4-nitrophenyl)-1,4-bis(phenylsulfonyl)-1,4-dihydro-1,2,4,5-tetrazine (2n)

Yield: 40.6 mg (67%); yellow solid; mp 102–104 °C.

IR (film): 2919, 2849, 1523, 1332, 1185, 1175, 855, 608 cm–1.

1H NMR (400 MHz, DMSO-d6 ): δ = 8.34 (d, J = 8.3 Hz, 4 H), 7.91 (t, J = 6.9 Hz, 2 H), 7.80–7.73 (m, 12 H).

13C NMR (100 MHz, DMSO-d6 ): δ = 151.4, 149.2, 135.5, 135.3, 135.1, 129.9, 129.8, 128.1, 123.5.

HRMS (ESI): m/z [M + H]+ calcd for C26H19N6O8S2: 607.0700; found: 607.0704.


#

1,4-Bis[(4-methoxyphenyl)sulfonyl]-3,6-bis(4-nitrophenyl)-1,4-dihydro-1,2,4,5-tetrazine (2o)

Yield: 42.0 mg (63%); yellow solid; mp 152–154 °C.

IR (film): 2919, 2850, 2361, 1167, 855, 600, 560 cm–1.

1H NMR (400 MHz, DMSO-d6 ): δ = 8.35 (d, J = 8.8 Hz, 4 H), 7.73 (t, J = 9.3 Hz, 8 H), 7.25 (d, J = 9.0 Hz, 4 H), 3.91 (s, 6 H).

13C NMR (100 MHz, DMSO-d6 ): δ = 164.5, 151.3, 149.1, 135.4, 130.7, 129.8, 126.3, 123.5, 115.1, 56.0.

HRMS (ESI): m/z [M + H]+ calcd for C28H23N6O10S2: 667.0912; found: 667.0916.


#

1,4-Bis(mesitylsulfonyl)-3,6-bis(4-nitrophenyl)-1,4-dihydro-1,2,4,5-tetrazine (2p)

Yield: 52.4 mg (76%); yellow solid; mp 79–81 °C.

IR (film): 2978, 2940, 1600, 1525, 1348, 1333, 1173, 855, 606 cm–1.

1H NMR (400 MHz, CDCl3): δ = 8.25 (d, J = 8.6 Hz, 4 H), 7.58 (d, J = 8.6 Hz, 4 H), 7.09 (s, 4 H), 2.51 (s, 12 H), 2.42 (s, 6 H).

13C NMR (100 MHz, CDCl3): δ = 149.9, 149.4, 145.2, 141.5, 135.6, 132.1, 130.6, 129.8, 123.5, 26.8, 23.1, 21.2.

HRMS (ESI): m/z [M + H]+ calcd for C32H31N6O8S2: 691.1639; found: 691.1643.


#

3,6-Bis(4-nitrophenyl)-1,2,4,5-tetrazine (6a)

Yield: 59.6 mg (92%); purple solid; mp 234–236 °C.

1H NMR (400 MHz, CDCl3): δ = 8.90 (d, J = 8.6 Hz, 4 H), 8.50 (d, J = 8.6 Hz, 4 H).

The data for this product correspond with the published data.[9d]


#
#

Supporting Information

  • References

    • 2a Hwang DK, Dasari RR, Fenoll M, Alain-Rizzo V, Dindar A, Shim JW, Deb N, Fuentes-Hernandez C, Barlow S, Bucknall DG, Audebert P, Marder SR, Kippelen B. Adv. Mater. 2012; 24: 4445
    • 2b Li Z, Ding J, Song N, Du X, Zhou J, Lu J, Tao Y. Chem. Mater. 2011; 23: 1977
    • 2c Li Z, Ding J, Song N, Lu J, Tao Y. J. Am. Chem. Soc. 2010; 132: 13160
    • 3a Tang J, Chen D, Zhang G, Yang H, Cheng G. Synlett 2019; 30: 885
    • 3b Chen D, Yang H, Yi Z, Xiong H, Zhang L, Zhu S, Cheng G. Angew. Chem. Int. Ed. 2018; 57: 2081
    • 3c Chavez DE, Parrish DA, Mitchell L, Imler GH. Angew. Chem. Int. Ed. 2017; 56: 3575
    • 3d Chavez DE, Parrish DA, Mitchell L. Angew. Chem. Int. Ed. 2016; 55: 8666
    • 3e Zhang Q, He C, Yin P, Shreeve JM. Chem. Asian J. 2014; 9: 212
    • 3f Wei H, Gao H, Shreeve JM. Chem. Eur. J. 2014; 20: 16943
    • 3g Gao H, Shreeve JM. Chem. Rev. 2011; 111: 7377
    • 4a Tempas CD, Morris TW, Wisman DL, Le D, Din NU, Williams CG, Wang M, Polezhaev AV, Rahman TS, Caulton KG, Tait SL. Chem. Sci. 2018; 9: 1674
    • 4b Dolinar BS, Alexandropoulos DI, Vignesh KR, James T, Dunbar KR. J. Am. Chem. Soc. 2018; 140: 908
    • 4c Lemes MA, Brunet G, Pialat A, Ungur L, Korobkova I, Murugesu M. Chem. Commun. 2017; 53: 8660
    • 4d Alexandropoulos DI, Dolinar BS, Vignesh KR, Dunbar KR. J. Am. Chem. Soc. 2017; 139: 11040
    • 4e Woods TJ, Ballesteros-Rivas MF, Ostrovsky SM, Palii AV, Reu OS, Klokishner SI, Dunbar KR. Chem. Eur. J. 2015; 21: 10302
    • 5a Audebert P, Miomandre F. Chem. Sci. 2013; 4: 575
    • 5b Quinton C, Alain-Rizzo V, Dumas-Verdes C, Clavier G, Miomandre F, Audebert P. Eur. J. Org. Chem. 2012; 1394
    • 5c Miomandre F, Meallet-Renault R, Vachon JJ, Pansu RB, Audebert P. Chem. Commun. 2008; 1913
    • 5d Kim Y, Kim E, Clavier G, Audebert P. Chem. Commun. 2006; 3612
    • 6a Karaki F, Ohgane K, Imai H, Itoh K, Fujii H. Eur. J. Org. Chem. 2017; 3815
    • 6b Adib M, Soheilizad M, Zhu LG, Wu J. Synlett 2015; 26: 177
    • 6c Lang K, Davis L, Wallace S, Mahesh M, Cox DJ, Blackman ML, Fox JM, Chin JW. J. Am. Chem. Soc. 2012; 134: 10317
    • 6d Zeng Z, Hyer WS, Twamley B, Shreeve JM. Synthesis 2008; 1775
    • 6e Müller J, Troschütz R. Synthesis 2006; 1513
    • 6f Hamasaki A, Zimpleman JM, Hwang I, Boger DL. J. Am. Chem. Soc. 2005; 127: 10767
    • 6g Boger DL, Hong J. J. Am. Chem. Soc. 2001; 123: 8515
    • 7a Proverbio M, Procopio EQ, Panigati M, Mercurio S, Pennati R, Ascagni M, Leone R, Porta CL, Sugni M. Org. Biomol. Chem. 2019; 17: 509
    • 7b Wu H, Devaraj NK. Acc. Chem. Res. 2018; 51: 1249
    • 7c Oliveira BL, Bernardes GJ. L. Chem. Soc. Rev. 2017; 46: 4895
    • 7d Wu H, Devaraj NK. Top. Curr. Chem. 2016; 374: 3
    • 7e Oliveira BL, Guo Z, Boutureira O, Guerreiro A, Jiménez-Osés G, Bernardes GJ. L. Angew. Chem. Int. Ed. 2016; 55: 14683
    • 7f Maggi A, Ruivo E, Fissers J, Vangestel C, Chatterjee S, Joossens J, Sobott F, Staelens S, Stroobants S, Van Der Veken P, Wyffels L, Augustyns K. Org. Biomol. Chem. 2016; 14: 7544
    • 7g Wieczorek A, Werther P, Euchner J, Wombacher R. Chem. Sci. 2017; 8: 1506
    • 7h Wu H, Yang J, Šečkutė J, Devaraj NK. Angew. Chem. Int. Ed. 2014; 53: 5805
    • 7i Devaraj NK, Weissleder R, Hilderbrand SA. Bioconjugate Chem. 2008; 19: 2297
    • 8a Mao W, Shi W, Li J, Su D, Wang X, Zhang L, Pan L, Wu X, Wu H. Angew. Chem. Int. Ed. 2019; 58: 1106
    • 8b Li C, Ge H, Yin B, She M, Liu P, Lia X, Li J. RSC Adv. 2015; 5: 12277
    • 8c Yang J, Karver MR, Li W, Sahu S, Devaraj NK. Angew. Chem. Int. Ed. 2012; 51: 5222
    • 8d Bowie RA, Gardner MD, Neilson DG, Watson KM, Mahmood S, Ridd V. J. Chem. Soc., Perkin Trans. 1 1972; 2395
    • 9a Qu Y, Sauvage FX, Clavier G, Miomandre F, Audebert P. Angew. Chem. Int. Ed. 2018; 57: 12057
    • 9b Fang Z, Hu WL, Liu DY, Yua CY, Hu XG. Green Chem. 2017; 19: 1299
    • 9c Lv LP, Zhou XF, Shi HB, Gao JR, Hu WX. J. Chem. Res. 2014; 38: 368
    • 9d Liu H, Wei Y. Tetrahedron Lett. 2013; 54: 4645
    • 9e Pican S, Lapinte V, Pilard JF, Pasquinet E, Beller L, Fontaine L, Poullain D. Synlett 2009; 731
    • 9f Hu WX, Lv LP, Xu F, Shi HB. J. Chem. Res. 2006; 324
    • 9g Benassuti LD, Garanti L, Molteni G. Tetrahedron 2004; 60: 4627
    • 10a Arunprasath D, Bala BD, Sekar G. Adv. Synth. Catal. 2019; 361: 1172
    • 10b Wang H, Deng YH, Shao Z. Synthesis 2018; 50: 2281
    • 10c Qiu D, Mo F, Zhang Y, Wang J. Adv. Organomet. Chem. 2017; 67: 151
    • 10d Jadhav AP, Ray D, Rao VU. B, Singh RP. Eur. J. Org. Chem. 2016; 2369
    • 10e Mao S, Gao YR, Zhu XQ, Guo DD, Wang YQ. Org. Lett. 2015; 17: 1692
    • 10f Xu K, Shen C, Shan S. Chin. J. Org. Chem. 2015; 35: 294
    • 10g Xiao Q, Zhang Y, Wang J. Acc. Chem. Res. 2013; 46: 236
    • 10h Zhang Y, Wang J. Top. Curr. Chem. 2012; 327: 239
    • 10i Shao Z, Zhang H. Chem. Soc. Rev. 2012; 41: 560
    • 10j Barluenga J, Valdés C. Angew. Chem. Int. Ed. 2011; 50: 7486
    • 11a Wang JL, Li HJ, Wu YC. J. Org. Chem. 2018; 83: 8716
    • 11b Wang HS, Li HJ, Zhang ZG, Wu YC. Eur. J. Org. Chem. 2018; 915
    • 11c Wang H.-S, Li H.-J, Nan X, Luo Y.-Y, Wu Y.-C. J. Org. Chem. 2017; 82: 12914
    • 11d Wu QX, Li HJ, Wang HS, Zhang ZG, Wang CC, Wu YC. Synlett 2015; 26: 243
    • 12a Xia Y, Wang J. Chem. Soc. Rev. 2017; 46: 2306
    • 12b Chen Z, Liu Z, Cao G, Li H, Ren H. Adv. Synth. Catal. 2017; 359: 202
    • 12c Sha Q, Liu H, Wei Y. Eur. J. Org. Chem. 2014; 7707
  • 13 Ojha DP, Prabhu KR. Org. Lett. 2015; 17: 18
  • 14 CCDC 1939331 (2c) and CCDC 1939330 (2e) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.

  • References

    • 2a Hwang DK, Dasari RR, Fenoll M, Alain-Rizzo V, Dindar A, Shim JW, Deb N, Fuentes-Hernandez C, Barlow S, Bucknall DG, Audebert P, Marder SR, Kippelen B. Adv. Mater. 2012; 24: 4445
    • 2b Li Z, Ding J, Song N, Du X, Zhou J, Lu J, Tao Y. Chem. Mater. 2011; 23: 1977
    • 2c Li Z, Ding J, Song N, Lu J, Tao Y. J. Am. Chem. Soc. 2010; 132: 13160
    • 3a Tang J, Chen D, Zhang G, Yang H, Cheng G. Synlett 2019; 30: 885
    • 3b Chen D, Yang H, Yi Z, Xiong H, Zhang L, Zhu S, Cheng G. Angew. Chem. Int. Ed. 2018; 57: 2081
    • 3c Chavez DE, Parrish DA, Mitchell L, Imler GH. Angew. Chem. Int. Ed. 2017; 56: 3575
    • 3d Chavez DE, Parrish DA, Mitchell L. Angew. Chem. Int. Ed. 2016; 55: 8666
    • 3e Zhang Q, He C, Yin P, Shreeve JM. Chem. Asian J. 2014; 9: 212
    • 3f Wei H, Gao H, Shreeve JM. Chem. Eur. J. 2014; 20: 16943
    • 3g Gao H, Shreeve JM. Chem. Rev. 2011; 111: 7377
    • 4a Tempas CD, Morris TW, Wisman DL, Le D, Din NU, Williams CG, Wang M, Polezhaev AV, Rahman TS, Caulton KG, Tait SL. Chem. Sci. 2018; 9: 1674
    • 4b Dolinar BS, Alexandropoulos DI, Vignesh KR, James T, Dunbar KR. J. Am. Chem. Soc. 2018; 140: 908
    • 4c Lemes MA, Brunet G, Pialat A, Ungur L, Korobkova I, Murugesu M. Chem. Commun. 2017; 53: 8660
    • 4d Alexandropoulos DI, Dolinar BS, Vignesh KR, Dunbar KR. J. Am. Chem. Soc. 2017; 139: 11040
    • 4e Woods TJ, Ballesteros-Rivas MF, Ostrovsky SM, Palii AV, Reu OS, Klokishner SI, Dunbar KR. Chem. Eur. J. 2015; 21: 10302
    • 5a Audebert P, Miomandre F. Chem. Sci. 2013; 4: 575
    • 5b Quinton C, Alain-Rizzo V, Dumas-Verdes C, Clavier G, Miomandre F, Audebert P. Eur. J. Org. Chem. 2012; 1394
    • 5c Miomandre F, Meallet-Renault R, Vachon JJ, Pansu RB, Audebert P. Chem. Commun. 2008; 1913
    • 5d Kim Y, Kim E, Clavier G, Audebert P. Chem. Commun. 2006; 3612
    • 6a Karaki F, Ohgane K, Imai H, Itoh K, Fujii H. Eur. J. Org. Chem. 2017; 3815
    • 6b Adib M, Soheilizad M, Zhu LG, Wu J. Synlett 2015; 26: 177
    • 6c Lang K, Davis L, Wallace S, Mahesh M, Cox DJ, Blackman ML, Fox JM, Chin JW. J. Am. Chem. Soc. 2012; 134: 10317
    • 6d Zeng Z, Hyer WS, Twamley B, Shreeve JM. Synthesis 2008; 1775
    • 6e Müller J, Troschütz R. Synthesis 2006; 1513
    • 6f Hamasaki A, Zimpleman JM, Hwang I, Boger DL. J. Am. Chem. Soc. 2005; 127: 10767
    • 6g Boger DL, Hong J. J. Am. Chem. Soc. 2001; 123: 8515
    • 7a Proverbio M, Procopio EQ, Panigati M, Mercurio S, Pennati R, Ascagni M, Leone R, Porta CL, Sugni M. Org. Biomol. Chem. 2019; 17: 509
    • 7b Wu H, Devaraj NK. Acc. Chem. Res. 2018; 51: 1249
    • 7c Oliveira BL, Bernardes GJ. L. Chem. Soc. Rev. 2017; 46: 4895
    • 7d Wu H, Devaraj NK. Top. Curr. Chem. 2016; 374: 3
    • 7e Oliveira BL, Guo Z, Boutureira O, Guerreiro A, Jiménez-Osés G, Bernardes GJ. L. Angew. Chem. Int. Ed. 2016; 55: 14683
    • 7f Maggi A, Ruivo E, Fissers J, Vangestel C, Chatterjee S, Joossens J, Sobott F, Staelens S, Stroobants S, Van Der Veken P, Wyffels L, Augustyns K. Org. Biomol. Chem. 2016; 14: 7544
    • 7g Wieczorek A, Werther P, Euchner J, Wombacher R. Chem. Sci. 2017; 8: 1506
    • 7h Wu H, Yang J, Šečkutė J, Devaraj NK. Angew. Chem. Int. Ed. 2014; 53: 5805
    • 7i Devaraj NK, Weissleder R, Hilderbrand SA. Bioconjugate Chem. 2008; 19: 2297
    • 8a Mao W, Shi W, Li J, Su D, Wang X, Zhang L, Pan L, Wu X, Wu H. Angew. Chem. Int. Ed. 2019; 58: 1106
    • 8b Li C, Ge H, Yin B, She M, Liu P, Lia X, Li J. RSC Adv. 2015; 5: 12277
    • 8c Yang J, Karver MR, Li W, Sahu S, Devaraj NK. Angew. Chem. Int. Ed. 2012; 51: 5222
    • 8d Bowie RA, Gardner MD, Neilson DG, Watson KM, Mahmood S, Ridd V. J. Chem. Soc., Perkin Trans. 1 1972; 2395
    • 9a Qu Y, Sauvage FX, Clavier G, Miomandre F, Audebert P. Angew. Chem. Int. Ed. 2018; 57: 12057
    • 9b Fang Z, Hu WL, Liu DY, Yua CY, Hu XG. Green Chem. 2017; 19: 1299
    • 9c Lv LP, Zhou XF, Shi HB, Gao JR, Hu WX. J. Chem. Res. 2014; 38: 368
    • 9d Liu H, Wei Y. Tetrahedron Lett. 2013; 54: 4645
    • 9e Pican S, Lapinte V, Pilard JF, Pasquinet E, Beller L, Fontaine L, Poullain D. Synlett 2009; 731
    • 9f Hu WX, Lv LP, Xu F, Shi HB. J. Chem. Res. 2006; 324
    • 9g Benassuti LD, Garanti L, Molteni G. Tetrahedron 2004; 60: 4627
    • 10a Arunprasath D, Bala BD, Sekar G. Adv. Synth. Catal. 2019; 361: 1172
    • 10b Wang H, Deng YH, Shao Z. Synthesis 2018; 50: 2281
    • 10c Qiu D, Mo F, Zhang Y, Wang J. Adv. Organomet. Chem. 2017; 67: 151
    • 10d Jadhav AP, Ray D, Rao VU. B, Singh RP. Eur. J. Org. Chem. 2016; 2369
    • 10e Mao S, Gao YR, Zhu XQ, Guo DD, Wang YQ. Org. Lett. 2015; 17: 1692
    • 10f Xu K, Shen C, Shan S. Chin. J. Org. Chem. 2015; 35: 294
    • 10g Xiao Q, Zhang Y, Wang J. Acc. Chem. Res. 2013; 46: 236
    • 10h Zhang Y, Wang J. Top. Curr. Chem. 2012; 327: 239
    • 10i Shao Z, Zhang H. Chem. Soc. Rev. 2012; 41: 560
    • 10j Barluenga J, Valdés C. Angew. Chem. Int. Ed. 2011; 50: 7486
    • 11a Wang JL, Li HJ, Wu YC. J. Org. Chem. 2018; 83: 8716
    • 11b Wang HS, Li HJ, Zhang ZG, Wu YC. Eur. J. Org. Chem. 2018; 915
    • 11c Wang H.-S, Li H.-J, Nan X, Luo Y.-Y, Wu Y.-C. J. Org. Chem. 2017; 82: 12914
    • 11d Wu QX, Li HJ, Wang HS, Zhang ZG, Wang CC, Wu YC. Synlett 2015; 26: 243
    • 12a Xia Y, Wang J. Chem. Soc. Rev. 2017; 46: 2306
    • 12b Chen Z, Liu Z, Cao G, Li H, Ren H. Adv. Synth. Catal. 2017; 359: 202
    • 12c Sha Q, Liu H, Wei Y. Eur. J. Org. Chem. 2014; 7707
  • 13 Ojha DP, Prabhu KR. Org. Lett. 2015; 17: 18
  • 14 CCDC 1939331 (2c) and CCDC 1939330 (2e) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.

Zoom Image
Scheme 1 Synthetic applications of arylsulfonylhydrazones
Zoom Image
Scheme 2 Synthesis of 1,2,4,5-tetrazines 2ap. General conditions: 1 (0.2 mmol), NCS (0.4 mmol), KOH (0.2 mmol), CH3NO2 (1.0 mL), 0 °C, 3 h.
Zoom Image
Figure 1 X-ray crystal structures of 1,2,4,5-tetrazines 2c and 2e [14]
Zoom Image
Scheme 3 Proposed mechanism involving the chlorination of N-tosylhydrazones 1 and the formation of 1,2,4,5-tetrazines 2
Zoom Image
Scheme 4 Deprotection/aromatization of 3,6-bis(4-nitrophenyl)-1,4-ditosyl-1,4-dihydro-1,2,4,5-tetrazine (2a)