Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2021; 53(05): 971-977
DOI: 10.1055/s-0040-1706104
DOI: 10.1055/s-0040-1706104
paper
Insertion Reaction of 2-Halo-N-allylanilines with K2S Involving Trisulfur Radical Anion: Synthesis of Benzothiazole Derivatives under Transition-Metal-Free Conditions
We gratefully acknowledge the National Natural Science Foundation of China (21971174 and 21772137), PAPD, the Major Basic Research Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions (No. 16KJA150002), the Project of Scientific and Technologic Infrastructure of Suzhou (SZS201708), Soochow University, and State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials for financial support.

Abstract
A synthesis of benzothiazole derivatives through the reaction of 2-halo-N-allylanilines with K2S in DMF is developed. The trisulfur radical anion S3·–, which is generated in situ from K2S in DMF, initiates the reaction without transition-metal catalysis or other additives. In addition, two C–S bonds are formed and heteroaromatization of benzothiazole is triggered by radical cyclization and H-shift.
Keywords
transition metal-free - trisulfur radical anion - benzothiazole derivatives - radicals - cyclizationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1706104.
- Supporting Information
Publication History
Received: 04 November 2020
Accepted after revision: 19 November 2020
Article published online:
14 December 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Ueki M, Ueno K, Miyadoh S, Abe K, Shibata K, Taniguchi M, Oi S. J. Antibiot. 1993; 46: 1089
- 1b Don M.-J, Shen C.-C, Lin Y.-L, Syu W, Ding Y.-H, Sun C.-M. J. Nat. Prod. 2005; 68: 1066
- 1c Sato S, Kajiura T, Noguchi M, Takehana K, Kobayashi T, Tsuji T. J. Antibiot. 2001; 54: 102
- 1d Davidson J, Corey PE. J. J. Am. Chem. Soc. 2003; 125: 13486
- 1e Wang N.-Z, Saidhareddy P.-l, Jiang X.-F. Nat. Prod. Rep. 2020; 37: 246
- 2a Jiang L.-L, Tan Y, Zhu X.-L, Wang Z.-F, Zuo Y, Chen Q, Xi Z, Yang G.-F. J. Agric. Food Chem. 2010; 58: 2643
- 2b Naya A, Kobayashi K, Ishikawa M, Ohwaki K, Saeki T, Noguchi K, Ohtake N. Bioorg. Med. Chem. Lett. 2001; 11: 1219
- 2c Candeias NR, Branco LC, Gois PM. P, Afonso CA. M, Trindade AF. Chem. Rev. 2009; 109: 2703
- 2d Wu X.-F, Neumann H, Beller M. Chem. Rev. 2013; 113: 1
- 2e Yuan J, Liu C, Lei A.-W. Chem. Commun. 2015; 51: 1394
- 2f Feng M.-H, Tang B.-Q, Liang S.-H, Jiang X.-f. Curr. Top. Med. Chem. 2016; 16: 1200
- 3a Cao D.-W, Yan C.-X, Zhou P.-P, Zeng H.-Y, Li C.-J. Chem. Commun. 2019; 55: 767
- 3b Discekici EH, Treat NJ, Poelma SO, Mattson KM, Hudson ZM, Luo Y.-D, Hawker CJ, Alaniz J. Chem. Commun. 2015; 51: 11705
- 4a Röder L, Nicholls AJ, Baxendale IR. Molecules 2019; 24: 1996
- 4b Fang L, Qi L, Ye L.-F, Pan Z.-T, Luo W.-J, Ling F, Zhong W.-H. J. Chem. Res. 2018; 42: 579
- 4c Hou C.-D, Ren Y.-L, Lang R, Hu X.-X, Xia C.-G, Li F.-W. Chem. Commun. 2012; 48: 5181
- 4d Felipe-Blanco D, Alonso F, Gonzalez-Gomez JC. Adv. Synth. Catal. 2017; 359: 2857
- 5a Chun S, Yang S, Chung Y.-K. Tetrahedron 2017; 73: 3438
- 5b Gao X, Yu B, Mei Q.-Q, Yang Z.-Z, Zhao Y.-F, Zhang H.-Y, Hao L.-D, Liu Z.-M. New J. Chem. 2016; 40: 8282
- 5c Mostafavi H, Islami MR, Ghonchepour E, Tikdari AM. Chem. Papers 2018; 72: 2973
- 5d Rasal KB, Yadav GD. Org. Process Res. Dev. 2016; 20: 2067
- 6a Ke Z.-G, Yu B, Wang H, Xiang J.-F, Han J.-J, Wu Y.-Y, Liu Z.-H, Yang P, Liu Z.-M. Green Chem. 2019; 21: 1695
- 6b Gao X, Yu B, Yang Z.-Z, Zhao Y.-F, Zhang H.-Y, Hao L.-D, Han B.-X, Liu Z.-M. ACS Catal. 2015; 5: 6648
- 6c Song J.-L, Zhou B.-W, Liu H.-Z, Xie C, Meng Q.-L, Zhang Z.-R, Han B.-X. Green Chem. 2016; 18: 3956
- 6d Zhang B, Du G.-X, Hang W, Wang S, Xi C.-J. Eur. J. Org. Chem. 2018; 1739
- 7a Wade AR, Pawar HR, Biware MV, Chikate RC. Green Chem. 2015; 17: 3879
- 7b Sharma H, Singh N, Jang DO. Green Chem. 2014; 16: 4922
- 7c Samanta S, Das S, Biswas P. J. Org. Chem. 2013; 78: 11184
- 7d Sharma P, Gupta M, Kant R, Gupta VK. New J. Chem. 2015; 39: 5116
- 8a Zhang G.-t, Yi H, Chen H, Bian C.-L, Liu C, Lei A.-W. Org. Lett. 2014; 16: 6156
- 8b Tan W, Wang C.-H, Jiang X.-F. Chin. J. Chem. 2019; 37: 1234
- 8c Jin S.-N, Kuang Z.-J, Song Q.-L. Org. Lett. 2020; 22: 615
- 8d Ming W, Dai Z.-H, Jiang X.-F. Nat. Commun. 2019; 10: 2661
- 8e Wang M, Fan Q.-L, Jiang X.-F. Org. Lett. 2016; 18: 5756
- 9 Gu Z.-Y, Cao J.-J, Wang S.-Y, Ji S.-J. Chem. Sci. 2016; 7: 4067
- 10 Li J.-H, Huang Q, Wang S.-Y, Ji S.-J. Org. Lett. 2018; 20: 4704
- 11 Liu B.-B, Bai H.-W, Liu H, Wang S.-Y, Ji S.-J. J. Org. Chem. 2018; 83: 10281
- 12a Yoo E.-J, Chang S. Org. Lett. 2008; 10: 1163
- 12b Liu M.-Y, Wang X, Sun X.-L, He W. Tetrahedron Lett. 2014; 55: 2711
- 12c Reddy SM. K, Kothandapani J, Sengan K, Veerappan A, Selva GS. Mol. Catal. 2019; 465: 80
- 12d Ramesh K, Satyanarayana G. Eur. J. Org. Chem. 2019; 3856
- 12e Rong M.-G, Qin T.-Z, Zi W.-W. Org. Lett. 2019; 21: 5421
- 12f Xie C.-X, Han X.-S, Gong J, Li D.-Y, Ma C. Org. Biomol. Chem. 2017; 15: 5811
- 12g Caddick S, Kofie W. Tetrahedron Lett. 2002; 43: 9347
- 12h Weinrich ML, Beck HP. Tetrahedron Lett. 2009; 50: 6968
- 12i Lu C, Zhang Q, Chen X. Synth. Commun. 2016; 46: 1215