Synlett 2021; 32(04): 329-336
DOI: 10.1055/s-0040-1707326
synpacts

Designing the Secondary Coordination Sphere in Small-Molecule Catalysis

Inbal L. Zak
,
Santosh C. Gadekar
,
Anat Milo
Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva, Israel
› Author Affiliations
This research was supported by the Israel Science Foundation (Grant No. 1193/17). I. L. Z. gratefully acknowledges the BGU Faculty of Natural Sciences for an MSc excellence fellowship. S.C.G. gratefully acknowledges the Kreitman School of Advanced Graduate Studies, Ben-Gurion University of the Negev for a postdoctoral fellowship.


Abstract

The application of secondary-sphere interactions in catalysis was inspired by the hierarchical arrangement of the microenvironment of metalloprotein active sites and has been adopted mainly in organometallic catalysis. The study of such interactions has enabled the deliberate orientation of reaction components, leading to control over reactivity and selectivity by design. Although not as common, such interaction can play a decisive role in organocatalysis. Herein, we present several examples of small-molecule organometallic- and organocatalysis, highlighting the advantages offered by carefully designing the secondary sphere.

1 Introduction

2 Secondary-Sphere Design in Organometallic Catalysis

3 Secondary-Sphere Modification in Organocatalysis

4 Using Statistical Analysis to Systematically Tune and Probe Secondary-Sphere Interactions

5 Conclusion



Publication History

Received: 24 August 2020

Accepted after revision: 15 September 2020

Article published online:
12 October 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Toste FD, Sigman MS, Miller SJ. Acc. Chem. Res. 2017; 50: 609
  • 2 Davis HJ, Phipps RJ. Chem. Sci. 2017; 8: 864
  • 3 Leenders SH. A. M, Gramage-Doria R, De Bruin B, Reek JN. H. Chem. Soc. Rev. 2015; 44: 433
  • 4 Bone R, Silen JL, Agard DA. Acc. Chem. Res. 1990; 23: 120
  • 5 Borovik AS. Acc. Chem. Res. 2005; 38: 54
  • 6 Cook SA, Borovik AS. Acc. Chem. Res. 2015; 48: 2407
  • 7 Lucas RL, Zart MK, Murkerjee J, Sorrell TN, Powell DR, Borovik AS. J. Am. Chem. Soc. 2006; 128: 15476
  • 8 Matson EM, Bertke JA, Fout AR. Inorg. Chem. 2014; 53: 4450
  • 9 Ford CL, Park YJ, Matson EM, Gordon Z, Fout AR. Science 2016; 354: 741
  • 10 Breslow R, Zhang B. J. Am. Chem. Soc. 1996; 118: 8495
  • 11 Breslow R, Huang Y, Zhang X, Yang J. Angew. Chem., Int. Ed. Engl. 1997; 94: 11156
  • 12 Frost JR, Huber SM, Breitenlechner S, Bannwarth C, Bach T. Angew. Chem. Int. Ed. 2015; 54: 691
  • 13 Olivo G, Fairnelli G, Barbieri A, Lanzalunga O, Di Stefano S, Costas M. Angew. Chem. Int. Ed. 2017; 56: 16347
  • 14 Das S, Incarvito CD, Crabtree RH, Brudvig GW. Science 2006; 312: 1941
  • 15 Gellrich U, Huang J, Seiche W, Keller M, Meuwly M, Breit B. J. Am. Chem. Soc. 2011; 133: 964
  • 16 Fuchs D, Rousseau G, Diab L, Gellrich U, Breit B. Angew. Chem. Int. Ed. 2012; 51: 2178
  • 17 Kuninobu Y, Ida H, Nishi M, Kanai M. Nat. Chem. 2015; 7: 712
  • 18 Davis HJ, Mihai MT, Phipps RJ. J. Am. Chem. Soc. 2016; 138: 12759
  • 19 Han Z, Li P, Zhang Z, Chen C, Wang Q, Dong X.-Q, Zhang X. ACS Catal. 2016; 6: 6214
  • 20 Voss F, Herdtweck E, Bach T. Chem. Commun. 2011; 47: 2137
  • 21 Neel AJ, Hilton MJ, Sigman MS, Toste FD. Nature 2017; 543: 637
  • 22 Jung H, Schrader M, Kim D, Baik M.-H, Park Y, Chang S. J. Am. Chem. Soc. 2019; 141: 15356
  • 23 Reichardt C. Chem. Rev. 1994; 94: 2319
  • 24 Smithrud DB, Diederich F. J. Am. Chem. Soc. 1990; 112: 339
  • 25 Cubberley MS, Iverson BL. J. Am. Chem. Soc. 2001; 123: 7560
  • 26 Clarke ML, Fuentes JA. Angew. Chem. Int. Ed. 2007; 46: 930
  • 27 Fuentes JA, Lebl T, Slawin AM. Z, Clarke ML. Chem. Sci. 2011; 2: 1997
  • 28 Lewis CA, Gustafson JL, Chiu A, Balsells J, Pollard D, Murry J, Reamer RA, Hansen KB, Miller SJ. J. Am. Chem. Soc. 2008; 130: 16358
  • 29 Gustafson JL, Sigman MS, Miller SJ. Org. Lett. 2010; 12: 2794
  • 30 Siegel JB, Zanghellini A, Lovick HM, Kiss G, Lambert AR, St Clair JL, Gallaher JL, Hilvert D, Gelb MH, Stoddard BL, Houk KN, Michael FE, Baker D. Science 2010; 329: 309
  • 31 Dantas G, Kuhlman B, Callender D, Wong M, Baker D. J. Mol. Biol. 2003; 332: 449
  • 32 Zanghellini A, Jiang L, Wollacott AM, Cheng G, Meiler J, Althoff EA, Röthlisberger D, Baker D. Protein Sci. 2006; 15: 2785
  • 33 Dhayalan V, Gadekar SC, Alassad Z, Milo A. Nat. Chem. 2019; 11: 543
  • 34 Baragwanath L, Rose CA, Zeitler K, Connon SJ. J. Org. Chem. 2009; 74: 9214