Subscribe to RSS
DOI: 10.1055/s-0040-1707326
Designing the Secondary Coordination Sphere in Small-Molecule Catalysis
Authors
This research was supported by the Israel Science Foundation (Grant No. 1193/17). I. L. Z. gratefully acknowledges the BGU Faculty of Natural Sciences for an MSc excellence fellowship. S.C.G. gratefully acknowledges the Kreitman School of Advanced Graduate Studies, Ben-Gurion University of the Negev for a postdoctoral fellowship.

Abstract
The application of secondary-sphere interactions in catalysis was inspired by the hierarchical arrangement of the microenvironment of metalloprotein active sites and has been adopted mainly in organometallic catalysis. The study of such interactions has enabled the deliberate orientation of reaction components, leading to control over reactivity and selectivity by design. Although not as common, such interaction can play a decisive role in organocatalysis. Herein, we present several examples of small-molecule organometallic- and organocatalysis, highlighting the advantages offered by carefully designing the secondary sphere.
1 Introduction
2 Secondary-Sphere Design in Organometallic Catalysis
3 Secondary-Sphere Modification in Organocatalysis
4 Using Statistical Analysis to Systematically Tune and Probe Secondary-Sphere Interactions
5 Conclusion
Key words
secondary coordination sphere - noncovalent interactions - hydrogen bonds - organometallics - organocatalysisPublication History
Received: 24 August 2020
Accepted after revision: 15 September 2020
Article published online:
12 October 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1
Toste FD,
Sigman MS,
Miller SJ.
Acc. Chem. Res. 2017; 50: 609
Reference Ris Wihthout Link
- 2
Davis HJ,
Phipps RJ.
Chem. Sci. 2017; 8: 864
Reference Ris Wihthout Link
- 3
Leenders SH. A. M,
Gramage-Doria R,
De Bruin B,
Reek JN. H.
Chem. Soc. Rev. 2015; 44: 433
Reference Ris Wihthout Link
- 4
Bone R,
Silen JL,
Agard DA.
Acc. Chem. Res. 1990; 23: 120
Reference Ris Wihthout Link
- 5
Borovik AS.
Acc. Chem. Res. 2005; 38: 54
Reference Ris Wihthout Link
- 6
Cook SA,
Borovik AS.
Acc. Chem. Res. 2015; 48: 2407
Reference Ris Wihthout Link
- 7
Lucas RL,
Zart MK,
Murkerjee J,
Sorrell TN,
Powell DR,
Borovik AS.
J. Am. Chem. Soc. 2006; 128: 15476
Reference Ris Wihthout Link
- 8
Matson EM,
Bertke JA,
Fout AR.
Inorg. Chem. 2014; 53: 4450
Reference Ris Wihthout Link
- 9
Ford CL,
Park YJ,
Matson EM,
Gordon Z,
Fout AR.
Science 2016; 354: 741
Reference Ris Wihthout Link
- 10
Breslow R,
Zhang B.
J. Am. Chem. Soc. 1996; 118: 8495
Reference Ris Wihthout Link
- 11
Breslow R,
Huang Y,
Zhang X,
Yang J.
Angew. Chem., Int. Ed. Engl. 1997; 94: 11156
Reference Ris Wihthout Link
- 12
Frost JR,
Huber SM,
Breitenlechner S,
Bannwarth C,
Bach T.
Angew. Chem. Int. Ed. 2015; 54: 691
Reference Ris Wihthout Link
- 13
Olivo G,
Fairnelli G,
Barbieri A,
Lanzalunga O,
Di Stefano S,
Costas M.
Angew. Chem. Int. Ed. 2017; 56: 16347
Reference Ris Wihthout Link
- 14
Das S,
Incarvito CD,
Crabtree RH,
Brudvig GW.
Science 2006; 312: 1941
Reference Ris Wihthout Link
- 15
Gellrich U,
Huang J,
Seiche W,
Keller M,
Meuwly M,
Breit B.
J. Am. Chem. Soc. 2011; 133: 964
Reference Ris Wihthout Link
- 16
Fuchs D,
Rousseau G,
Diab L,
Gellrich U,
Breit B.
Angew. Chem. Int. Ed. 2012; 51: 2178
Reference Ris Wihthout Link
- 17
Kuninobu Y,
Ida H,
Nishi M,
Kanai M.
Nat. Chem. 2015; 7: 712
Reference Ris Wihthout Link
- 18
Davis HJ,
Mihai MT,
Phipps RJ.
J. Am. Chem. Soc. 2016; 138: 12759
Reference Ris Wihthout Link
- 19
Han Z,
Li P,
Zhang Z,
Chen C,
Wang Q,
Dong X.-Q,
Zhang X.
ACS Catal. 2016; 6: 6214
Reference Ris Wihthout Link
- 20
Voss F,
Herdtweck E,
Bach T.
Chem. Commun. 2011; 47: 2137
Reference Ris Wihthout Link
- 21
Neel AJ,
Hilton MJ,
Sigman MS,
Toste FD.
Nature 2017; 543: 637
Reference Ris Wihthout Link
- 22
Jung H,
Schrader M,
Kim D,
Baik M.-H,
Park Y,
Chang S.
J. Am. Chem. Soc. 2019; 141: 15356
Reference Ris Wihthout Link
- 23
Reichardt C.
Chem. Rev. 1994; 94: 2319
Reference Ris Wihthout Link
- 24
Smithrud DB,
Diederich F.
J. Am. Chem. Soc. 1990; 112: 339
Reference Ris Wihthout Link
- 25
Cubberley MS,
Iverson BL.
J. Am. Chem. Soc. 2001; 123: 7560
Reference Ris Wihthout Link
- 26
Clarke ML,
Fuentes JA.
Angew. Chem. Int. Ed. 2007; 46: 930
Reference Ris Wihthout Link
- 27
Fuentes JA,
Lebl T,
Slawin AM. Z,
Clarke ML.
Chem. Sci. 2011; 2: 1997
Reference Ris Wihthout Link
- 28
Lewis CA,
Gustafson JL,
Chiu A,
Balsells J,
Pollard D,
Murry J,
Reamer RA,
Hansen KB,
Miller SJ.
J. Am. Chem. Soc. 2008; 130: 16358
Reference Ris Wihthout Link
- 29
Gustafson JL,
Sigman MS,
Miller SJ.
Org. Lett. 2010; 12: 2794
Reference Ris Wihthout Link
- 30
Siegel JB,
Zanghellini A,
Lovick HM,
Kiss G,
Lambert AR,
St Clair JL,
Gallaher JL,
Hilvert D,
Gelb MH,
Stoddard BL,
Houk KN,
Michael FE,
Baker D.
Science 2010; 329: 309
Reference Ris Wihthout Link
- 31
Dantas G,
Kuhlman B,
Callender D,
Wong M,
Baker D.
J. Mol. Biol. 2003; 332: 449
Reference Ris Wihthout Link
- 32
Zanghellini A,
Jiang L,
Wollacott AM,
Cheng G,
Meiler J,
Althoff EA,
Röthlisberger D,
Baker D.
Protein Sci. 2006; 15: 2785
Reference Ris Wihthout Link
- 33
Dhayalan V,
Gadekar SC,
Alassad Z,
Milo A.
Nat. Chem. 2019; 11: 543
Reference Ris Wihthout Link
- 34
Baragwanath L,
Rose CA,
Zeitler K,
Connon SJ.
J. Org. Chem. 2009; 74: 9214
Reference Ris Wihthout Link