Synthesis 2020; 52(16): 2395-2409
DOI: 10.1055/s-0040-1707514
paper
© Georg Thieme Verlag Stuttgart · New York

Transition-Metal-Free, Intermolecular Azidoheteroarylation of Alkenes: Efficient Access to β-Azidoalkylated Quinoxalinones and Preliminary Antifungal Evaluation Against Magnaporthe grisea

Yiming Du
a   Key Laboratory for Biobased Materials and Energy of Ministry of Education and Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. of China   Email: scaulizhaodong@scau.edu.cn   Email: qinweiwei@scau.edu.cn
,
Yue Chen
a   Key Laboratory for Biobased Materials and Energy of Ministry of Education and Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. of China   Email: scaulizhaodong@scau.edu.cn   Email: qinweiwei@scau.edu.cn
,
b   School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. of China
,
Weiwei Qin
a   Key Laboratory for Biobased Materials and Energy of Ministry of Education and Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. of China   Email: scaulizhaodong@scau.edu.cn   Email: qinweiwei@scau.edu.cn
,
Zhaodong Li
a   Key Laboratory for Biobased Materials and Energy of Ministry of Education and Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. of China   Email: scaulizhaodong@scau.edu.cn   Email: qinweiwei@scau.edu.cn
c   Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, P. R. of China
› Author Affiliations
We gratefully acknowledge the Start-up Grant from South China Agricultural­ University and Guangdong Basic and Applied Basic Research Foundation 2019 (A1515011824) for the financial support.
Further Information

Publication History

Received: 02 March 2020

Accepted after revision: 23 March 2020

Publication Date:
27 April 2020 (online)


Abstract

An efficient, PhI(OAc)2-mediated, radical azidoheteroarylation of alkenes under transition-metal-free conditions is reported by employing TMSN3 and quinoxalin-2(1H)-ones as coupling partners. This domino reaction allows an efficient synthesis of valuable orangoazides containing quinoxalin-2(1H)-one derivatives and could be extended to phosphinyl-alkylated quinoxalin-2(1H)-one in a single step in moderate to excellent yields under mild conditions, as demonstrated by the preliminary antibacterial evaluation against Magnaporthe grisea for the first time. Mechanistic studies revealed that this transformation undergoes a cascade addition pathway controlled by a polar radical.

Supporting Information

 
  • References


    • For selected reviews on difunctionalization of alkenes, see:
    • 1a Zeng X. Chem. Rev. 2013; 113: 6864
    • 1b Romero RM, Woste TH, Muniz K. Chem. Asian J. 2014; 9: 972
    • 1c Koike T, Akita M. Org. Chem. Front. 2016; 3: 1345
    • 1d Yin G, Mu X, Liu G. Acc. Chem. Res. 2016; 49: 2413
    • 1e Wu X, Wu S, Zhu C. Tetrahedron Lett. 2018; 59: 1328
    • 1f Li Z.-L, Fang G.-Ch, Gu Q.-S, Liu X.-Y. Chem. Soc. Rev. 2020; 49: 32

      For selected examples on carboazidation reactions, see:
    • 2a Panchaud P, Renaud P. J. Org. Chem. 2004; 69: 3205
    • 2b Dagousset G, Carboni A, Magnier E, Masson G. Org. Lett. 2014; 16: 4340
    • 2c Kong W, Merino E, Nevado C. Angew. Chem. Int. Ed. 2014; 53: 5078
    • 2d Wang F, Qi X, Liang Z, Chen P, Liu G. Angew. Chem. Int. Ed. 2014; 53: 1881
    • 2e Wu Z, Ren R, Zhu C. Angew. Chem. Int. Ed. 2016; 55: 10821
    • 2f Geng X, Lin F, Wang X, Jiao N. Org. Lett. 2017; 19: 4738
    • 2g Bunescu A, Ha TM, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2017; 56: 10555
    • 2h Wang D, Wang F, Chen P, Lin Z, Liu G. Angew. Chem. Int. Ed. 2017; 56: 2054
    • 2i Xu L, Chen J, Chu L. Org. Chem. Front. 2019; 6: 512
    • 2j Xiong H, Ramkumar N, Chiou M.-F, Jian W, Li Y, Su J -H, Zhang X, Bao H. Nat. Commun. 2019; 10: 122

      For selected examples on diazidation reactions, see:
    • 3a Fumagalli G, Rabet PT, Boyd S, Greaney MF. Angew. Chem. Int. Ed. 2015; 54: 11481
    • 3b Lu M.-Z, Wang C -Q, Loh T.-P. Org. Lett. 2015; 17: 6110
    • 3c Yuan YA, Lu DF, Chen YR, Xu H. Angew. Chem. Int. Ed. 2016; 55: 534
    • 3d Fu N, Sauer GS, Saha A, Loo A, Lin S. Science 2017; 357: 575
    • 3e Zhou H, Jian W, Qian B, Ye C, Li D, Zhou J, Bao H. Org. Lett. 2017; 19: 6120
    • 3f Li H, Shen S.-J, Zhu C.-L, Xu H. J. Am. Chem. Soc. 2018; 140: 10619
    • 3g Siu J, Parry J, Lin S. J. Am. Chem. Soc. 2019; 141: 2825
    • 3h Wu D, Cui S.-S, Lin Y, Li L, Yu W. J. Org. Chem. 2019; 84: 10978

      For other related examples, see:
    • 4a Zhang B, Studer A. Org. Lett. 2013; 15: 4548
    • 4b Zhu L, Yu H, Xu Z, Jiang X, Lin L, Wang R. Org. Lett. 2014; 16: 1562
    • 4c Zhu R, Buchwald SL. J. Am. Chem. Soc. 2015; 137: 8069
    • 4d Sun X, Li X, Song S, Zhu Y, Liang Y.-F, Jiao N. J. Am. Chem. Soc. 2015; 137: 6059
    • 4e Shen K, Wang Q. J. Am. Chem. Soc. 2017; 139: 13110
    • 4f Li X, Chen P, Liu G. Sci. China Chem. 2019; 62: 1537
    • 5a Organic Azides: Syntheses and Applications . Bräse S, Banert K. Wiley; Chichester: 2010
    • 5b Deng DS, Liu P, Ji BM, Wang L, Fu WJ. Tetrahedron Lett. 2010; 51: 5567
    • 5c Deng DS, Liu P, Ji BM, Fu WJ, Li L. Catal. Lett. 2010; 137: 163
    • 5d Brase S, Gil C, Knepper K, Zimmermann V. Angew. Chem. Int. Ed. 2005; 44: 5188
    • 6a Kumar R, Wiebe LI, Knaus EE. J. Med. Chem. 1993; 36: 2470
    • 6b Yu W, Jiang L, Shen C, Zhang P. Drug Dev. Res. 2016; 77: 319
    • 7a Matcha K, Narayan R, Antonchick AP. Angew. Chem. Int. Ed. 2013; 52: 7985
    • 7b Li L, Gu Q, Wang N, Song P, Li Z.-L, Li X.-H, Wang F.-L, Liu X.-Y. Chem. Commun. 2017; 53: 4038
    • 7c Li Z.-R, Wu D.-Q, Sun J, Shen J, Deng Q.-H. Asian J. Org. Chem. 2018; 7: 432
  • 8 Wang M, Wu Z, Zhang B, Zhu C. Org. Chem. Front. 2018; 5: 1896
  • 9 Liu Z, Liu Z.-Q. Org. Lett. 2017; 19: 5649
  • 10 Chen J, Zhu S, Qin J, Chu L. Chem. Commun. 2019; 55: 2336
  • 11 Lear JM, Buquoi JQ, Gu X, Pan K, Mustafaa DN, Nagib DA. Chem. Commun. 2019; 55: 8820

    • For selected reviews, see:
    • 12a Liu R, Huang Z.-H, Murray MG, Guo X.-Y, Liu GJ. J. Med. Chem. 2011; 54: 5747
    • 12b Hussain S, Parveen S, Hao X, Zhang S.-Z, Wang W, Qin X.-Y, Yang Y.-C, Chen X, Zhu S.-J, Zhu C.-J, Ma B. Eur. J. Med. Chem. 2014; 80: 383

      For selected examples, see:
    • 13a Carrër A, Brion JD, Messaoudi S, Alami M. Org. Lett. 2013; 15: 5606
    • 13b Deng DS, Kang GH, Ji BM, Li HL, Qu GR, Fan XS. Aust. J. Chem. 2013; 66: 1342
    • 13c Gao M, Li Y, Xie L.-J, Chauvin R, Cui X.-L. Chem. Commun. 2016; 52: 2846
    • 13d Li Y, Gao M, Wang L.-H, Cui X.-L. Org. Biomol. Chem. 2016; 14: 8428
    • 13e Yin K, Zhang R.-H. Org. Lett. 2017; 19: 1530
    • 13f Paul S, Ha JH, Park GE, Lee YR. Adv. Synth. Catal. 2017; 359: 1515
    • 13g Yuan J.-W, Liu S.-N, Qu L.-B. Adv. Synth. Catal. 2017; 359: 4197
    • 13h Gupta A, Deshmukh MS, Jain N. J. Org. Chem. 2017; 82: 4784
    • 13i Zeng X.-B, Liu C.-L, Wang X.-Y, Zhang J.-L, Wang X.-Y, Hu Y.-F. Org. Biomol. Chem. 2017; 15: 8929
    • 13j Deng DS, Guo H, Ji BM, Wang WZ, Ma LF, Luo F. New J. Chem. 2017; 41: 12611
    • 13k Yang L, Gao P, Duan X.-H, Gu Y.-R, Guo L.-N. Org. Lett. 2018; 20: 1034
    • 13l Fu J, Yuan J, Zhang Y, Xiao Y, Mao P, Diao X, Qu L. Org. Chem. Front. 2018; 5: 3382
    • 13m Yuan J, Fu J, Yin J, Dong Z, Xiao Y, Mao P, Qu L. Org. Chem. Front. 2018; 5: 2820
    • 13n Zheng D, Studer A. Org. Lett. 2019; 21: 325
    • 14a Li Z, Song L, Li C. J. Am. Chem. Soc. 2013; 135: 4640
    • 14b Li Z, Wang Z, Zhu L, Tan X, Li C. J. Am. Chem. Soc. 2014; 136: 16439
    • 14c Li Z, García-Domínguez A, Nevado C. J. Am. Chem. Soc. 2015; 137: 11610
    • 14d Li Z, García-Domínguez A, Nevado C. Angew. Chem. Int. Ed. 2016; 55: 6938
    • 14e Li Z, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2018; 57: 13288
    • 14f Li Z, Torres-Ochoa RS, Wang Q, Zhu J. Nat. Commun. 2020; 11: 403
    • 15a Liu Y.-L, Yin X.-P, Zhou J. Chin. J. Chem. 2018; 36: 321
    • 15b Liu Y.-L, Mao X.-Y, Lin X.-T, Chen G.-S. Org. Chem. Front. 2018; 5: 2303
    • 15c Mao X.-Y, Lin X.-T, Yang M, Chen GS, Liu Y.-L. Adv. Synth. Catal. 2018; 360: 3643
    • 15d Liu y.-L, Lin X.-T. Adv. Synth. Catal. 2019; 361: 876
    • 15e Luo J, Fang Y.-B, Mao X.-Y, Yang M, Zhao Y.-L, Liu Y.-L, Chen G.-S, Ji Y.-F. Adv. Synth. Catal. 2019; 361: 1408
    • 15f Chen S.-J, Zhang J.-H, Yang M.-F, Liu F.-G, Xie Z.-P, Liu Y.-L, Lin W.-X, Wang D.-R, Li X.-R, Wang J.-H. Chem. Commun. 2019; 55: 3879
    • 15g Wang L, Deng DS, Škoch K, Daniliuc CG, Kehr G, Erker G. Organometallics 2019; 38: 1897
    • 15h Zhao Y, Liu X, Zheng L, Du Y, Shi X, Liu Y.-L, Yan Z, You J, Jiang Y. J. Org. Chem. 2020; 85: 912
    • 15i Chen G.-S, Chen S.-J, Luo J, Mao X.-Y, Chan AS.-C, Sun RW.-Y, Liu Y.-L. Angew. Chem. Int. Ed. 2020; 59: 614
    • 15j Luo J, Chen G.-S, Chen SJ, Liu YL. Sci. Bull. 2020; 65: 670
    • 15k Chen G.-S, Lin X.-T, Liu Y.-L. Synlett 2020; DOI: in press; 10.1055/s-0039-1690853.
    • 15l Zhu Z, Liu J, Dong S, Chen B, Wang Z, Tang R.-Y, Li Z. Asian J. Org. Chem. 2020; 9 DOI: in press; 10.1002/ajoc.202000007.
    • 15m Shao M, Liang H, Liu Y.-L, Qin W, Li Z. Asian J. Org. Chem. 2020; 9 DOI: in press; 10.1002/ajoc.202000073.
  • 16 During the preparation of our manuscript, a similar work was reported, see: Shen J, Xu J, Huang L, Zhu Q, Zhang P. Adv. Synth. Catal. 2020; 362: 230
  • 17 See ref. 13l.
  • 18 Buquoi J, Lear JM, Gu X, Nagib DA. ACS Catal. 2019; 9: 5330
    • 19a Beckwith AL. J, Schiesser CH. Tetrahedron 1985; 41: 3925
    • 19b Spellmeyer DC, Houk KN. J. Org. Chem. 1987; 52: 959
    • 20a Vicentini CB, Forlani G, Manfrini M, Romagnoli C, Mares D. J. Agric. Food Chem. 2002; 50: 4839
    • 20b Cheng JL, Zhou Y, Zhao JH, Zhang C, Lin FC. Chin. Chem. Lett. 2010; 21: 1037