Eur J Pediatr Surg 2021; 31(06): 482-491
DOI: 10.1055/s-0041-1740338
Review Article

Genetic Counseling and Diagnostics in Anorectal Malformation

1   Department of Clinical Genetics, Radboudumc, Nijmegen, the Netherlands
,
Gabriel Dworschak
2   Department of Pediatrics, University Hospital Bonn Center of Paediatrics, Bonn, Nordrhein-Westfalen, Germany
3   Institute of Human Genetics, University Hospital Bonn, Bonn, Nordrhein-Westfalen, Germany
,
4   Department of Pediatric Surgery, Radboud Medical Centre, Nijmegen, the Netherlands
,
Iris A.L.M. van Rooij
5   Department for Health Evidence, Radboud University Medical Center, Nijmegen, the Netherlands
› Author Affiliations

Abstract

Anorectal malformation (ARM) is a relatively frequently occurring congenital anomaly of hindgut development with a prevalence of 1 in 3,000 live births. ARM may present as an isolated anomaly, but it can also be associated with other anomalies, sometimes as part of a recognizable syndrome. After birth, much medical attention is given to the treatment and restoring of bowel function in children with ARM. Effort should also be given to studying the etiology of the ARM in these patients. This information is important to both the medical community and the family, because it can help guide treatment and provides information on the long-term prognosis of the patient and recurrence risk in the family.

In this article, we will review the current knowledge on the (genetic) etiology of (syndromic) ARM and provide guidelines for (family) history taking and clinical and genetic studies of ARM patients and their families, which is needed to study the causal factors in an ARM patient and for genetic counseling of the families.



Publication History

Received: 26 October 2021

Accepted: 01 November 2021

Article published online:
15 December 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Wijers CH, van Rooij IA, Bakker MK. et al. Anorectal malformations and pregnancy-related disorders: a registry-based case-control study in 17 European regions. BJOG 2013; 120 (09) 1066-1074
  • 2 Holschneider A, Hutson J, Peña A. et al. Preliminary report on the International Conference for the Development of Standards for the Treatment of Anorectal Malformations. J Pediatr Surg 2005; 40 (10) 1521-1526
  • 3 Hassink EA, Rieu PN, Hamel BC, Severijnen RS, vd Staak FH, Festen C. Additional congenital defects in anorectal malformations. Eur J Pediatr 1996; 155 (06) 477-482
  • 4 Cuschieri A. EUROCAT Working Group. Anorectal anomalies associated with or as part of other anomalies. Am J Med Genet 2002; 110 (02) 122-130
  • 5 Stoll C, Dott B, Alembik Y, Roth MP. Associated anomalies in cases with anorectal anomalies. Am J Med Genet A 2018; 176 (12) 2646-2660
  • 6 Wijers CH, van Rooij IA, Marcelis CL, Brunner HG, de Blaauw I, Roeleveld N. Genetic and nongenetic etiology of nonsyndromic anorectal malformations: a systematic review. Birth Defects Res C Embryo Today 2014; 102 (04) 382-400
  • 7 Rohrer L, Vial Y, Gengler C, Tenisch E, Alamo L. Prenatal imaging of anorectal malformations - 10-year experience at a tertiary center in Switzerland. Pediatr Radiol 2020; 50 (01) 57-67
  • 8 Marcelis C, de Blaauw I, Brunner H. Chromosomal anomalies in the etiology of anorectal malformations: a review. Am J Med Genet A 2011; 155A (11) 2692-2704
  • 9 Spouge D, Baird PA. Imperforate anus in 700,000 consecutive liveborn infants. Am J Med Genet Suppl 1986; 2: 151-161
  • 10 Endo M, Hayashi A, Ishihara M. et al; Steering Committee of Japanese Study Group of Anorectal Anomalies. Analysis of 1,992 patients with anorectal malformations over the past two decades in Japan. J Pediatr Surg 1999; 34 (03) 435-441
  • 11 Brown S, Gersen S, Anyane-Yeboa K, Warburton D. Preliminary definition of a “critical region” of chromosome 13 in q32: report of 14 cases with 13q deletions and review of the literature. Am J Med Genet 1993; 45 (01) 52-59
  • 12 Brown S, Russo J, Chitayat D, Warburton D. The 13q- syndrome: the molecular definition of a critical deletion region in band 13q32. Am J Hum Genet 1995; 57 (04) 859-866
  • 13 Bartsch O, Kuhnle U, Wu LL, Schwinger E, Hinkel GK. Evidence for a critical region for penoscrotal inversion, hypospadias, and imperforate anus within chromosomal region 13q32.2q34. Am J Med Genet 1996; 65 (03) 218-221
  • 14 Garcia NM, Allgood J, Santos LJ. et al. Deletion mapping of critical region for hypospadias, penoscrotal transposition and imperforate anus on human chromosome 13. J Pediatr Urol 2006; 2 (04) 233-242
  • 15 Schinzel A, Schmid W, Fraccaro M. et al. The “cat eye syndrome”: dicentric small marker chromosome probably derived from a no.22 (tetrasomy 22pter to q11) associated with a characteristic phenotype. Report of 11 patients and delineation of the clinical picture. Hum Genet 1981; 57 (02) 148-158
  • 16 Liehr T, Pfeiffer RA, Trautmann U. Typical and partial cat eye syndrome: identification of the marker chromosome by FISH. Clin Genet 1992; 42 (02) 91-96
  • 17 Köhler S, Schulz MH, Krawitz P. et al. Clinical diagnostics in human genetics with semantic similarity searches in ontologies. Am J Hum Genet 2009; 85 (04) 457-464
  • 18 Kohlhase J, Wischermann A, Reichenbach H, Froster U, Engel W. Mutations in the SALL1 putative transcription factor gene cause Townes-Brocks syndrome. Nat Genet 1998; 18 (01) 81-83
  • 19 Botzenhart EM, Bartalini G, Blair E. et al. Townes-Brocks syndrome: twenty novel SALL1 mutations in sporadic and familial cases and refinement of the SALL1 hot spot region. Hum Mutat 2007; 28 (02) 204-205
  • 20 Currarino G, Coln D, Votteler T. Triad of anorectal, sacral, and presacral anomalies. AJR Am J Roentgenol 1981; 137 (02) 395-398
  • 21 Ross AJ, Ruiz-Perez V, Wang Y. et al. A homeobox gene, HLXB9, is the major locus for dominantly inherited sacral agenesis. Nat Genet 1998; 20 (04) 358-361
  • 22 Dworschak GC, Reutter HM, Ludwig M. Currarino syndrome: a comprehensive genetic review of a rare congenital disorder. Orphanet J Rare Dis 2021; 16 (01) 167
  • 23 Graham Jr JM, Schwartz CE. MED12 related disorders. Am J Med Genet A 2013; 161A (11) 2734-2740
  • 24 Clark RD, Graham Jr JM, Friez MJ. et al. FG syndrome, an X-linked multiple congenital anomaly syndrome: the clinical phenotype and an algorithm for diagnostic testing. Genet Med 2009; 11 (11) 769-775
  • 25 Meroni G. X–Linked Opitz G/BBB syndrome. In: Adam MP, Ardinger HH, Pagon RA. et al., eds. GeneReviews((R)). University of Seattle, Washington, USA; 1993-2021. Last accessed on November 26, at: http://www.washington.edu
  • 26 Mehta PA, Ebens C. Fanconi anemia. In: Adam MP, Ardinger HH, Pagon RA. et al., eds. GeneReviews((R)). University of Seattle, Washington, USA; 1993-2021. Last accessed on November 26, at: http://www.washington.edu
  • 27 Quan L, Smith DW. The VATER association. Vertebral defects, Anal atresia, T-E fistula with esophageal atresia, Radial and Renal dysplasia: a spectrum of associated defects. J Pediatr 1973; 82 (01) 104-107
  • 28 Temtamy SA, Miller JD. Extending the scope of the VATER association: definition of the VATER syndrome. J Pediatr 1974; 85 (03) 345-349
  • 29 Solomon BD, Bear KA, Kimonis V. et al. Clinical geneticists' views of VACTERL/VATER association. Am J Med Genet A 2012; 158A (12) 3087-3100
  • 30 van de Putte R, van Rooij IALM, Marcelis CLM. et al. Spectrum of congenital anomalies among VACTERL cases: a EUROCAT population-based study. Pediatr Res 2020; 87 (03) 541-549
  • 31 Hilger A, Schramm C, Draaken M. et al. Familial occurrence of the VATER/VACTERL association. Pediatr Surg Int 2012; 28 (07) 725-729
  • 32 Solomon BD, Pineda-Alvarez DE, Raam MS, Cummings DA. Evidence for inheritance in patients with VACTERL association. Hum Genet 2010; 127 (06) 731-733
  • 33 Brosens E, Eussen H, van Bever Y. et al. VACTERL association etiology: the impact of de novo and rare copy number variations. Mol Syndromol 2013; 4 (1-2): 20-26
  • 34 Saisawat P, Kohl S, Hilger AC. et al. Whole-exome resequencing reveals recessive mutations in TRAP1 in individuals with CAKUT and VACTERL association. Kidney Int 2014; 85 (06) 1310-1317
  • 35 Wessels MW, Kuchinka B, Heydanus R. et al. Polyalanine expansion in the ZIC3 gene leading to X-linked heterotaxy with VACTERL association: a new polyalanine disorder?. J Med Genet 2010; 47 (05) 351-355
  • 36 Hilger AC, Halbritter J, Pennimpede T. et al. Targeted resequencing of 29 candidate genes and mouse expression studies implicate ZIC3 and FOXF1 in human VATER/VACTERL association. Hum Mutat 2015; 36 (12) 1150-1154
  • 37 Shaw-Smith C. Genetic factors in esophageal atresia, tracheo-esophageal fistula and the VACTERL association: roles for FOXF1 and the 16q24.1 FOX transcription factor gene cluster, and review of the literature. Eur J Med Genet 2010; 53 (01) 6-13
  • 38 Stankiewicz P, Sen P, Bhatt SS. et al. Genomic and genic deletions of the FOX gene cluster on 16q24.1 and inactivating mutations of FOXF1 cause alveolar capillary dysplasia and other malformations. Am J Hum Genet 2009; 84 (06) 780-791
  • 39 Nakamura Y, Kikugawa S, Seki S. et al. PCSK5 mutation in a patient with the VACTERL association. BMC Res Notes 2015; 8: 228
  • 40 van de Putte R, Dworschak GC, Brosens E. et al. A genetics-first approach revealed monogenic disorders in patients with ARM and VACTERL anomalies. Front Pediatr 2020; 8: 310
  • 41 van Rooij IA, Wijers CH, Rieu PN. et al. Maternal and paternal risk factors for anorectal malformations: a Dutch case-control study. Birth Defects Res A Clin Mol Teratol 2010; 88 (03) 152-158
  • 42 Stoll C, Alembik Y, Roth MP, Dott B. Risk factors in congenital anal atresias. Ann Genet 1997; 40 (04) 197-204
  • 43 Falcone Jr RA, Levitt MA, Peña A, Bates M. Increased heritability of certain types of anorectal malformations. J Pediatr Surg 2007; 42 (01) 124-127 , discussion 127–128
  • 44 Oyen N, Boyd HA, Poulsen G, Wohlfahrt J, Melbye M. Familial recurrence of midline birth defects–a nationwide Danish cohort study. Am J Epidemiol 2009; 170 (01) 46-52
  • 45 Wijers CH, de Blaauw I, Marcelis CL. et al. Research perspectives in the etiology of congenital anorectal malformations using data of the International Consortium on Anorectal Malformations: evidence for risk factors across different populations. Pediatr Surg Int 2010; 26 (11) 1093-1099
  • 46 Dworschak GC, Zwink N, Schmiedeke E. et al. Epidemiologic analysis of families with isolated anorectal malformations suggests high prevalence of autosomal dominant inheritance. Orphanet J Rare Dis 2017; 12 (01) 180
  • 47 van den Hondel D, Wijers CH, van Bever Y. et al. Patients with anorectal malformation and upper limb anomalies: genetic evaluation is warranted. Eur J Pediatr 2016; 175 (04) 489-497