Synlett 2022; 33(18): 1841-1846
DOI: 10.1055/s-0042-1752342
cluster
Development and Applications of Novel Ligands/Catalysts and Mechanistic Studies on Catalysis

The Synthesis of Novel P,N-Ferrocenylpyrrolidine-Containing Ligands and Their Application in Pd-Catalyzed Allylic Alkylation – A Synthetic and Mechanistic Investigation

Therese B. Brennan
,
Helge Müller-Bunz
,
The acquisition of mass spectra was supported by a Science Foundation Ireland Infrastructure Award (18/RI/5702). We thank the University College Dublin (UCD) School of Chemistry for a Research Demonstratorship award to T.B.B. We also acknowledge the facilities of the Centre for Synthesis and Chemical Biology (CSCB), which was funded through the Higher Education Authority’s Programme for Research in Third-Level Institutions (PRTLI).


Abstract

The synthesis of a series of planar chiral P,N-ferrocenylpyrrolidine-containing ligands, with varying substituents at the phosphorus donor atom, is described. The phosphorus donor atom was introduced via a diastereoselective ortho-directed metalation of N-methylpyrrolidinyl ferrocene followed by a quench with various chlorophosphines. These P,N systems are very active in Pd-catalyzed allylic alkylation of 1,3-diphenylpropenyl acetate with dimethylmalonate (conversions of up to 100%) and demonstrated good levels of enantioselectivity (up to 85% ees). Good selectivity for the (R)-enantiomer was observed and mechanistic studies, involving X-ray crystallography and NMR spectroscopic experiments, were employed to help rationalize the observed stereochemical outcome of the reaction.

Supporting Information



Publication History

Received: 23 August 2022

Accepted after revision: 06 September 2022

Article published online:
12 October 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Kealy TJ, Pauson PL. Nature 1951; 168: 1039
  • 2 Togni A, Hayashi T. In Ferrocenes: Homogenous Catalysis-Organic Synthesis-Materials Science. VCH; Weinheim: 1995
  • 3 Marquarding D, Klusacek H, Gokel G, Hoffmann P, Ugi I. J. Am. Chem. Soc. 1970; 92: 5389
  • 4 Hayashi T, Yamamoto M, Kumada M. Tetrahedron Lett. 1974; 4405
  • 5 Cunningham L, Benson A, Guiry PJ. Org. Biomol. Chem. 2020; 18: 9329
  • 6 Richards CJ, Mulvaney AW. Tetrahedron: Asymmetry 1996; 7: 1419
  • 7 Sammakia T, Latham HA, Schaad DR. J. Org. Chem. 1995; 60: 10
  • 8 Nishibayashi Y, Uemura S. Synlett 1995; 79
  • 9 Malone YM, Guiry PJ. J. Organomet. Chem. 2000; 603: 110
  • 10 Kilroy TG, Hennessy AJ, Connolly DJ, Malone YM, Farrell A, Guiry PJ. J. Mol. Catal. A: Chem. 2003; 196: 65
  • 11 Farrell A, Goddard R, Guiry PJ. J. Org. Chem. 2002; 67: 4209
  • 12 Cahill JP, Guiry PJ. Tetrahedron: Asymmetry 1998; 9: 4301
  • 13 Cahill JP, Bohnen F, Goddard R, Krüger C, Guiry PJ. Tetrahedron: Asymmetry 1998; 9: 3831
  • 14 Cahill JP, Cunneen D, Guiry PJ. Tetrahedron: Asymmetry 1999; 10: 4157
  • 15 Ahern T, Müller-Bunz H, Guiry PJ. J. Org. Chem. 2006; 71: 7596
  • 16 Meaney K, Goddard R, Bronger RP. J, Guiry PJ. Tetrahedron 2021; 90: 132088
  • 17 Guiry PJ, Flanagan SP. J. Organomet. Chem. 2006; 691: 2125
  • 18 Trost BM, Van Vranken DL. Chem. Rev. 1996; 96: 395
  • 19 Trost BM, Toste FD. J. Am. Chem. Soc. 1998; 120: 9074
  • 20 Trost BM, Toste FD. J. Am. Chem. Soc. 1999; 121: 4545
  • 21 Trost BM, Crawley ML. Chem. Rev. 2003; 103: 2921
  • 22 Milhau L, Guiry PJ. Topics in Organometallic Chemistry, Vol. 38. Kazmaier U. Springer; Berlin, Heidelberg: 2012: 5-154
  • 23 Helmchen G, Pfaltz A. Acc. Chem. Res. 2000; 33: 336
  • 24 Pàmies O, Margalef J, Santiago Cañellas C, James J, Judge E, Guiry PJ, Moberg C, Bäckvall J.-E, Pfaltz A, Pericàs MA, Diéguez M. Chem. Rev. 2021; 121: 4373
  • 25 Butts CP, Filali E, Lloyd-Jones GC, Norrby P.-O, Sale DA, Schramm Y. J. Am. Chem. Soc. 2009; 131: 9945
  • 26 Markert C, Neuburger M, Kulicke K, Meuwly M, Pfaltz A. Angew. Chem. Int. Ed. 2007; 46: 5892
  • 27 Kleimark J, Norrby P.-O. Top. Organomet. Chem. 2012; 38: 65
  • 28 Carroll A.-M, McCarthy M, Lacey PM, Saunders CP, Connolly DJ, Farrell A, Rokade BJ, Goddard R, Fristrup P, Norrby P.-O, Guiry PJ. Tetrahedron 2020; 76: 130780
  • 29 Cusumano AQ, Stoltz BM, Goddard WA. J. Am. Chem. Soc. 2020; 142: 13917
  • 30 Togni A, Burckhardt U, Gramlich V, Pregosin PS, Salzmann R. J. Am. Chem. Soc. 1996; 118: 1031
  • 31 Auburn PR, Mackenzie PB, Bosnich B. J. Am. Chem. Soc. 1985; 107: 2033
  • 32 Hayashi T, Yamamoto A, Hagihara T, Ito Y. Tetrahedron Lett. 1986; 27: 191
  • 33 Fekner T, Muller-Bunz H, Guiry PJ. Org. Lett. 2006; 8: 5109
  • 34 Sprinz J, Helmchen G. Tetrahedron Lett. 1993; 34: 1769
  • 35 Brown JM, Hulmes DI, Guiry PJ. Tetrahedron 1994; 15: 4493
  • 36 von Matt P, Lloyd-Jones GC, Minidis AB. E, Pfaltz A, Macko L, Neuburger M, Zehnder M, Ruegger H, Pregosin PS. Helv. Chim. Acta 1995; 78: 265
  • 37 Sprinz J, Kiefer M, Helmchen G, Huttner G, Walter O, Zsolnai L, Reggelin M. Tetrahedron Lett. 1994; 35: 1523
  • 38 Kollmar M, Goldfuss B, Reggelin M, Rominger F, Helmchen G. Chem. Eur. J. 2001; 7: 4913
  • 39 Preparation of 2-[(2R)-N-Methylpyrrolidin-2′yl]-(1R)-ferrocenyldi(aryl/alkyl)-phosphines 8a–c To a solution of (R)-1-ferrocenyl-2-methylpyrrolidine (7, 0.63 g, 2.12 mmol) in dry diethyl ether (7 mL) at –78 °C, sec-butyllithium (1.97 mL, 1.4 M, 2.76 mmol) was added dropwise. The orange suspension was stirred for 3 h at this temperature and at 0 °C for 90 min to ensure complete lithiation. The relevant chlorophosphine (2.76 mmol) was added as a solution in diethyl ether (3 mL) at 0 °C, and the reaction was stirred at room temperature for a further hour. The reaction was quenched with 10 % ammonium chloride (5 mL) and extracted with diethyl ether (3 × 8 mL). The combined organic layers were washed with water (10 mL), brine (10 mL), dried (Na2SO4), and concentrated to give the crude product as an orange oil. The crude product contained a mixture of diastereomers (80–85% de), which were separated by column chromatography. Analytical Data of Compound (R,R p)-8a Isolated as an orange sticky solid in 51% yield; Rf = 0.64 (Al, 5:1 pentane/ethyl acetate); [α]D +184.0 (c = 0.5, CHCl3). IR (KBr disc): νmax = 3020, 2926, 2400, 1216 cm–1. 1H NMR (600 MHz, CDCl3): δ = 1.15–1.50 (m, 9 H, Cy), 1.55–1.75 (m, 8 H, Cy, H4′b), 1.85–1.90 (m, 3 H, Cy, H4′a), 1.95–2.10 (m, 3 H, Cy), 2.18–2.25 (m, 2 H, H3′b, H5′b), 2.27 (s, 3 H, N–Me), 2.32–2.38 (m, 1 H, Cy), 2.40–2.48 (m, 1 H, H3′a), 2.97 (app t, J = 8.0 Hz, 1 H, H2′), 3.07 (app t, J = 8.0 Hz, 1 H, H5′a), 4.10 (br s, 1 H, CpH5), 4.13 (s, 5 H, unsub. Cp), 4.21 (br s, 1 H, CpH3), 4.23 (app t, J = 2.1 Hz, 1 H, CpH4). 13C NMR (151 MHz, CDCl3): δ = 23.0 (d, 5 J P,C = 1.0 Hz, C4′), 26.5 (d, 4 J P,C = 1.0 Hz, Cy), 26.6 (d, 4 J P,C = 1.0 Hz, Cy), 27.3 (d, 3 J P,C = 7.5 Hz, Cy), 27.6 (d, 3 J P,C = 7.4 Hz, Cy), 27.7 (d, 2 J P,C = 13.2 Hz, Cy), 28.2 (d, 2 J P,C = 12.3 Hz, Cy), 29.1 (d, 3 J P,C = 7.5 Hz, Cy), 30.1 (d, 3 J P.C = 8.8 Hz, Cy), 32.1 (d, 2 J P,C = 16.4 Hz, Cy), 32.7 (d, 2 J P,C = 20.2 Hz, Cy), 33.6 (d, 4 J P,C = 12.1 Hz, C3’), 35.0 (d, 1 J P,C = 12.5 Hz, Cy), 36.3 (d, 1 J P,C = 13.0 Hz, Cy), 40.9 (N–Me), 58.1 (C5′), 66.0 (d, 3 J P,C = 1.7 Hz, C2′), 67.5 (CpC4), 69.5 (Cp), 70.8 (d, 3 J P,C = 3.0 Hz, CpC3), 71.0 (d, 2 J P,C = 2.5 Hz, CpC5), 77.7 (d, 1 J P,C = 22.7 Hz, CpC1), 94.2 (d, 2 J P,C = 16.7 Hz, CpC2). 31P NMR (243 MHz, CDCl3): δ = –11.0. Anal. Calcd for C27H40FeNP: C, 69.67; H, 8.66; N, 3.01. Found: C, 70.07; H, 8.75; N, 2.74. ESI-HRMS: m/z calcd for C27H40FeNP [M + H]: 466.2326; found: 466.2343.