Journal of Pediatric Epilepsy 2023; 12(01): 029-040
DOI: 10.1055/s-0042-1760106
Review Article

Minimally Invasive Destructive, Ablative, and Disconnective Epilepsy Surgery

Jeffrey M. Treiber
1   Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, United States
2   Division of Pediatric Neurosurgery, Department of Surgery, Texas Children's Hospital, Houston, Texas, United States
,
James C. Bayley
1   Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, United States
2   Division of Pediatric Neurosurgery, Department of Surgery, Texas Children's Hospital, Houston, Texas, United States
,
Daniel Curry
1   Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, United States
2   Division of Pediatric Neurosurgery, Department of Surgery, Texas Children's Hospital, Houston, Texas, United States
› Author Affiliations

Abstract

Conventional epilepsy surgery performed by microsurgical dissection typically requires large cranial working windows created with high-speed drills and lengthy incisions. In the past few decades, minimally invasive techniques have been developed with smaller incisions, comparable efficacy, shorter hospitalizations, and better safety profiles. These minimally invasive alternatives utilize stereotactic, ultrasonic, radiotherapeutic, and endoscopic techniques. Although not able to completely replace conventional surgery for all etiologies of epilepsy, these minimally invasive techniques have revolutionized modern epilepsy surgery and have been an invaluable asset to the neurosurgeon's repertoire. The endoscope has allowed for surgeons to have adequate visualization during resective and disconnective epilepsy surgeries using keyhole or miniature craniotomies. Modern stereotactic techniques such as laser interstitial thermal therapy and radiofrequency ablation can be used as viable alternatives for mesial temporal lobe epilepsy and can destroy lesional tissue deep areas without the approach-related morbidity of microsurgery such as with hypothalamic hamartomas. These stereotactic techniques do not preclude future surgery in the settings of treatment failure and have been used successfully after failed conventional surgery. Multiple ablation corridors can be performed in a single procedure that can be used for lesioning of large targets or to simplify treating multifocal epilepsies. These stereotactic techniques have even been used successfully to perform disconnective procedures such as hemispherotomies and corpus callosotomies. In patients unable to tolerate surgery, stereotactic radiosurgery is a minimally invasive option that can result in improved seizure control with minimal procedural risks. Advances in minimally invasive neurosurgery provide viable treatment options for drug-resistant epilepsy with quicker recovery, less injury to functional brain, and for patients that may otherwise not choose conventional surgery.



Publication History

Received: 16 November 2022

Accepted: 16 November 2022

Article published online:
05 January 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Berg AT, Zelko FA, Levy SR, Testa FM. Age at onset of epilepsy, pharmacoresistance, and cognitive outcomes: a prospective cohort study. Neurology 2012; 79 (13) 1384-1391
  • 2 Laxer KD, Trinka E, Hirsch LJ. et al. The consequences of refractory epilepsy and its treatment. Epilepsy Behav 2014; 37: 59-70
  • 3 Danguecan AN, Smith ML. Academic outcomes in individuals with childhood-onset epilepsy: mediating effects of working memory. J Int Neuropsychol Soc 2017; 23 (07) 594-604
  • 4 Cano-López I, Hampel KG, Garcés M, Villanueva V, González-Bono E. Quality of life in drug-resistant epilepsy: relationships with negative affectivity, memory, somatic symptoms and social support. J Psychosom Res 2018; 114: 31-37
  • 5 Luoni C, Bisulli F, Canevini MP. et al; SOPHIE Study Group. Determinants of health-related quality of life in pharmacoresistant epilepsy: results from a large multicenter study of consecutively enrolled patients using validated quantitative assessments. Epilepsia 2011; 52 (12) 2181-2191
  • 6 Hitiris N, Mohanraj R, Norrie J, Brodie MJ. Mortality in epilepsy. Epilepsy Behav 2007; 10 (03) 363-376
  • 7 Sperling MR, Feldman H, Kinman J, Liporace JD, O'Connor MJ. Seizure control and mortality in epilepsy. Ann Neurol 1999; 46 (01) 45-50
  • 8 Shackleton DP, Westendorp RGJ, Kasteleijn-Nolst Trenité DGA, de Craen AJM, Vandenbroucke JP. Survival of patients with epilepsy: an estimate of the mortality risk. Epilepsia 2002; 43 (04) 445-450
  • 9 Vaughan KA, Lopez Ramos C, Buch VP. et al. An estimation of global volume of surgically treatable epilepsy based on a systematic review and meta-analysis of epilepsy. J Neurosurg 2018; 130: 1-15
  • 10 Téllez-Zenteno JF, Dhar R, Wiebe S. Long-term seizure outcomes following epilepsy surgery: a systematic review and meta-analysis. Brain 2005; 128 (Pt 5): 1188-1198
  • 11 Engel Jr J, McDermott MP, Wiebe S. et al; Early Randomized Surgical Epilepsy Trial (ERSET) Study Group. Early surgical therapy for drug-resistant temporal lobe epilepsy: a randomized trial. JAMA 2012; 307 (09) 922-930
  • 12 Wiebe S, Blume WT, Girvin JP, Eliasziw M. Effectiveness and Efficiency of Surgery for Temporal Lobe Epilepsy Study Group. A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med 2001; 345 (05) 311-318
  • 13 Beatty CW, Lockrow JP, Gedela S, Gehred A, Ostendorf AP. The missed value of underutilizing pediatric epilepsy surgery: a systematic review. Semin Pediatr Neurol 2021; 39: 100917
  • 14 Maragkos GA, Geropoulos G, Kechagias K, Ziogas IA, Mylonas KS. Quality of life after epilepsy surgery in children: a systematic review and meta-analysis. Neurosurgery 2019; 85 (06) 741-749
  • 15 O'Brien J, Gray V, Woolfall K. Child and parent experiences of childhood epilepsy surgery and adjustment to life following surgery: a qualitative study. Seizure 2020; 83: 83-88
  • 16 Jain P, Smith ML, Speechley K. et al; Pepsqol Study Team. Seizure freedom improves health-related quality of life after epilepsy surgery in children. Dev Med Child Neurol 2020; 62 (05) 600-608
  • 17 Sherman EMS, Wiebe S, Fay-McClymont TB. et al. Neuropsychological outcomes after epilepsy surgery: systematic review and pooled estimates. Epilepsia 2011; 52 (05) 857-869
  • 18 Reilly C, Baldeweg T, Stewart N. et al. Do behavior and emotions improve after pediatric epilepsy surgery? A systematic review. Epilepsia 2019; 60 (05) 885-897
  • 19 Elliott IM, Lach L, Kadis DS, Smith ML. Psychosocial outcomes in children two years after epilepsy surgery: has anything changed?. Epilepsia 2008; 49 (04) 634-641
  • 20 Hamiwka L, Macrodimitris S, Tellez-Zenteno JF. et al; CASES Investigators. Social outcomes after temporal or extratemporal epilepsy surgery: a systematic review. Epilepsia 2011; 52 (05) 870-879
  • 21 Sperling MR, Harris A, Nei M, Liporace JD, O'Connor MJ. Mortality after epilepsy surgery. Epilepsia 2005; 46 (suppl 11): 49-53
  • 22 Rubinger L, Chan C, Andrade D. et al. Socioeconomic status influences time to surgery and surgical outcome in pediatric epilepsy surgery. Epilepsy Behav 2016; 55: 133-138
  • 23 Engel Jr J. Why is there still doubt to cut it out?. Epilepsy Curr 2013; 13 (05) 198-204
  • 24 Meinardi H, Scott RA, Reis R, Sander JW. ILAE Commission on the Developing World. The treatment gap in epilepsy: the current situation and ways forward. Epilepsia 2001; 42 (01) 136-149
  • 25 England MJ, Liverman CT, Schultz AM, Strawbridge LM. Epilepsy across the spectrum: promoting health and understanding. A summary of the Institute of Medicine report. Epilepsy Behav 2012; 25 (02) 266-276
  • 26 Pestana Knight EM, Schiltz NK, Bakaki PM, Koroukian SM, Lhatoo SD, Kaiboriboon K. Increasing utilization of pediatric epilepsy surgery in the United States between 1997 and 2009. Epilepsia 2015; 56 (03) 375-381
  • 27 Perry MS, Shandley S, Perelman M. et al. Surgical evaluation in children <3 years of age with drug-resistant epilepsy: patient characteristics, diagnostic utilization, and potential for treatment delays. Epilepsia 2022; 63 (01) 96-107
  • 28 Swarztrauber K, Dewar S, Engel Jr J. Patient attitudes about treatments for intractable epilepsy. Epilepsy Behav 2003; 4 (01) 19-25
  • 29 Zuccato JA, Milburn C, Valiante TA. Balancing health literacy about epilepsy surgery in the community. Epilepsia 2014; 55 (11) 1754-1762
  • 30 Ono KE, Bearden DJ, Adams E. et al. Cognitive and behavioral outcome of stereotactic laser amydalohippocampotomy in a pediatric setting. Epilepsy Behav Rep 2020; 14: 100370
  • 31 Gross RE, Mahmoudi B, Riley JP. Less is more: novel less-invasive surgical techniques for mesial temporal lobe epilepsy that minimize cognitive impairment. Curr Opin Neurol 2015; 28 (02) 182-191
  • 32 Caruso JP, Janjua MB, Dolce A, Price AV. Retrospective analysis of open surgical versus laser interstitial thermal therapy callosotomy in pediatric patients with refractory epilepsy. J Neurosurg Pediatr 2021; 27 (04) 420-428
  • 33 Schiltz NK, Fernandez-Baca Vaca G. Epidemiologist's view: addressing the epilepsy surgery treatment gap with minimally-invasive techniques. Epilepsy Res 2018; 142: 179-181
  • 34 Horsley V, Clarke RH. The structure and functions of the cerebellum examined by a new method. Brain 1908; 31: 45-124
  • 35 Rahman M, Murad GJA, Mocco J. Early history of the stereotactic apparatus in neurosurgery. Neurosurg Focus 2009; 27 (03) E12
  • 36 al-Rodhan NRF, Kelly PJ. Pioneers of stereotactic neurosurgery. Stereotact Funct Neurosurg 1992; 58 (1-4): 60-66
  • 37 Spyrantis A, Woebbecke T, Rueß D. et al. Accuracy of robotic and frame-based stereotactic neurosurgery in a phantom model. Front Neurorobot 2022; 16: 762317
  • 38 Lefranc M, Capel C, Pruvot AS. et al. The impact of the reference imaging modality, registration method and intraoperative flat-panel computed tomography on the accuracy of the ROSA® stereotactic robot. Stereotact Funct Neurosurg 2014; 92 (04) 242-250
  • 39 Mavridis IN, Lo WB, Wimalachandra WSB. et al. Pediatric stereo-electroencephalography: effects of robot assistance and other variables on seizure outcome and complications. J Neurosurg Pediatr 2021; 28 (04) 404-415
  • 40 Abel TJ, Varela Osorio R, Amorim-Leite R. et al. Frameless robot-assisted stereoelectroencephalography in children: technical aspects and comparison with Talairach frame technique. J Neurosurg Pediatr 2018; 22 (01) 37-46
  • 41 Kassiri J. et al. Safety and efficacy of stereoelectroencephalography in pediatric epilepsy surgery. J Pediatr Epilepsy 2022; 11 (03) 75-79
  • 42 Bourdillon P, Ryvlin P, Isnard J. et al. Stereotactic electroencephalography is a safe procedure, including for insular implantations. World Neurosurg 2017; 99: 353-361
  • 43 Mullin JP, Shriver M, Alomar S. et al. Is SEEG safe? A systematic review and meta-analysis of stereo-electroencephalography-related complications. Epilepsia 2016; 57 (03) 386-401
  • 44 Parrent AG, Lozano AM. Stereotactic surgery for temporal lobe epilepsy. Can J Neurol Sci 2000; 27(suppl 1):S79–S84, discussion S92–S96
  • 45 Patil A-A, Andrews R, Torkelson R. Stereotactic volumetric radiofrequency lesioning of intracranial structures for control of intractable seizures. Stereotact Funct Neurosurg 1995; 64 (03) 123-133
  • 46 Schwab RS, Sweet WH, Mark VH, Kjellberg RN, Ervin FR. Treatment of intractable temporal lobe epilepsy by stereotactic amygdala lesions. Trans Am Neurol Assoc 1965; 90: 12-19
  • 47 Narabayashi H, Mizutani T. Epileptic seizures and the stereotaxic amygdalotomy. Confin Neurol 1970; 32 (02) 289-297
  • 48 Balasubramaniam V, Kanaka TS. Stereotactic surgery of the limbic system in epilepsy. Acta Neurochir (Wien) 1976; (suppl 23): 225-234
  • 49 Heimburger RF, Small IF, Small JG, Milstein V, Moore D. Stereotactic amygdalotomy for convulsive and behavioral disorders. Long-term follow-up study. Appl Neurophysiol 1978; 41 (1-4): 43-51
  • 50 Hoppe C, Witt JA, Helmstaedter C, Gasser T, Vatter H, Elger CE. Laser interstitial thermotherapy (LiTT) in epilepsy surgery. Seizure 2017; 48: 45-52
  • 51 Guénot M, Isnard J, Ryvlin P, Fischer C, Mauguière F, Sindou M. SEEG-guided RF thermocoagulation of epileptic foci: feasibility, safety, and preliminary results. Epilepsia 2004; 45 (11) 1368-1374
  • 52 Cossu M, Cardinale F, Casaceli G. et al. Stereo-EEG-guided radiofrequency thermocoagulations. Epilepsia 2017; 58 (suppl 1): 66-72
  • 53 Catenoix H, Bourdillon P, Guénot M, Isnard J. The combination of stereo-EEG and radiofrequency ablation. Epilepsy Res 2018; 142: 117-120
  • 54 Cossu M, Fuschillo D, Casaceli G. et al. Stereoelectroencephalography-guided radiofrequency thermocoagulation in the epileptogenic zone: a retrospective study on 89 cases. J Neurosurg 2015; 123 (06) 1358-1367
  • 55 Wang Y, Xu J, Liu T. et al. Magnetic resonance-guided laser interstitial thermal therapy versus stereoelectroencephalography-guided radiofrequency thermocoagulation for drug-resistant epilepsy: a systematic review and meta-analysis. Epilepsy Res 2020; 166: 106397
  • 56 Moles A, Guénot M, Rheims S. et al. SEEG-guided radiofrequency coagulation (SEEG-guided RF-TC) versus anterior temporal lobectomy (ATL) in temporal lobe epilepsy. J Neurol 2018; 265 (09) 1998-2004
  • 57 Bourdillon P, Cucherat M, Isnard J. et al. Stereo-electroencephalography-guided radiofrequency thermocoagulation in patients with focal epilepsy: a systematic review and meta-analysis. Epilepsia 2018; 59 (12) 2296-2304
  • 58 Scholly J, Pizzo F, Timofeev A. et al. High-frequency oscillations and spikes running down after SEEG-guided thermocoagulations in the epileptogenic network of periventricular nodular heterotopia. Epilepsy Res 2019; 150: 27-31
  • 59 Bourdillon P, Isnard J, Catenoix H. et al. Stereo electroencephalography-guided radiofrequency thermocoagulation (SEEG-guided RF-TC) in drug-resistant focal epilepsy: results from a 10-year experience. Epilepsia 2017; 58 (01) 85-93
  • 60 Zhao R, Xue P, Zhou Y. et al. Application of robot-assisted frameless stereoelectroencephalography based on multimodal image guidance in pediatric refractory epilepsy: experience of a pediatric center in a developing country. World Neurosurg 2020; 140: e161-e168
  • 61 Chipaux M, Taussig D, Dorfmuller G. et al. SEEG-guided radiofrequency thermocoagulation of epileptic foci in the paediatric population: feasibility, safety and efficacy. Seizure 2019; 70: 63-70
  • 62 Wu C, Jermakowicz WJ, Chakravorti S. et al. Effects of surgical targeting in laser interstitial thermal therapy for mesial temporal lobe epilepsy: a multicenter study of 234 patients. Epilepsia 2019; 60 (06) 1171-1183
  • 63 Youngerman BE, Oh JY, Anbarasan D. et al; Columbia Comprehensive Epilepsy Center Co-Authors. Laser ablation is effective for temporal lobe epilepsy with and without mesial temporal sclerosis if hippocampal seizure onsets are localized by stereoelectroencephalography. Epilepsia 2018; 59 (03) 595-606
  • 64 Gross RE, Stern MA, Willie JT. et al. Stereotactic laser amygdalohippocampotomy for mesial temporal lobe epilepsy. Ann Neurol 2018; 83 (03) 575-587
  • 65 Donos C, Breier J, Friedman E. et al. Laser ablation for mesial temporal lobe epilepsy: surgical and cognitive outcomes with and without mesial temporal sclerosis. Epilepsia 2018; 59 (07) 1421-1432
  • 66 Drane DL, Loring DW, Voets NL. et al. Better object recognition and naming outcome with MRI-guided stereotactic laser amygdalohippocampotomy for temporal lobe epilepsy. Epilepsia 2015; 56 (01) 101-113
  • 67 Attiah MA, Paulo DL, Danish SF, Stein SC, Mani R. Anterior temporal lobectomy compared with laser thermal hippocampectomy for mesial temporal epilepsy: a threshold analysis study. Epilepsy Res 2015; 115: 1-7
  • 68 Rosenfeld JV, Feiz-Erfan I. Hypothalamic hamartoma treatment: surgical resection with the transcallosal approach. Semin Pediatr Neurol 2007; 14 (02) 88-98
  • 69 Curry DJ, Raskin J, Ali I, Wilfong AA. MR-guided laser ablation for the treatment of hypothalamic hamartomas. Epilepsy Res 2018; 142: 131-134
  • 70 Gadgil N, Lam S, Pan IW. et al. Staged magnetic resonance-guided laser interstitial thermal therapy for hypothalamic hamartoma: analysis of ablation volumes and morphological considerations. Neurosurgery 2020; 86 (06) 808-816
  • 71 Hale AT, Sen S, Haider AS. et al. Open resection versus laser interstitial thermal therapy for the treatment of pediatric insular epilepsy. Neurosurgery 2019; 85 (04) E730-E736
  • 72 Perry MS, Donahue DJ, Malik SI. et al. Magnetic resonance imaging-guided laser interstitial thermal therapy as treatment for intractable insular epilepsy in children. J Neurosurg Pediatr 2017; 20 (06) 575-582
  • 73 McCracken DJ, Willie JT, Fernald BA. et al. Magnetic resonance thermometry-guided stereotactic laser ablation of cavernous malformations in drug-resistant epilepsy: imaging and clinical results. Oper Neurosurg (Hagerstown) 2016; 12 (01) 39-48
  • 74 Hawasli AH, Bandt SK, Hogan RE, Werner N, Leuthardt EC. Laser ablation as treatment strategy for medically refractory dominant insular epilepsy: therapeutic and functional considerations. Stereotact Funct Neurosurg 2014; 92 (06) 397-404
  • 75 Lewis EC, Weil AG, Duchowny M, Bhatia S, Ragheb J, Miller I. MR-guided laser interstitial thermal therapy for pediatric drug-resistant lesional epilepsy. Epilepsia 2015; 56 (10) 1590-1598
  • 76 Treiber JM, Curry DJ, Weiner HL, Roth J. Epilepsy surgery in tuberous sclerosis complex (TSC): emerging techniques and redefinition of treatment goals. Childs Nerv Syst 2020; 36 (10) 2519-2525
  • 77 Romanelli P, Weiner HL, Najjar S, Devinsky O. Bilateral resective epilepsy surgery in a child with tuberous sclerosis: case report. Neurosurgery 2001; 49 (03) 732-734 , discussion 735
  • 78 Elliott RE, Carlson C, Kalhorn SP. et al. Refractory epilepsy in tuberous sclerosis: vagus nerve stimulation with or without subsequent resective surgery. Epilepsy Behav 2009; 16 (03) 454-460
  • 79 Guerreiro MM, Andermann F, Andermann E. et al. Surgical treatment of epilepsy in tuberous sclerosis: strategies and results in 18 patients. Neurology 1998; 51 (05) 1263-1269
  • 80 Ravindra VM, Lee S, Gonda D. et al. Magnetic resonance-guided laser interstitial thermal therapy for pediatric periventricular nodular heterotopia-related epilepsy. J Neurosurg Pediatr 2021; 28: 1-6
  • 81 Esquenazi Y, Kalamangalam GP, Slater JD. et al. Stereotactic laser ablation of epileptogenic periventricular nodular heterotopia. Epilepsy Res 2014; 108 (03) 547-554
  • 82 Chan AY, Rolston JD, Lee B, Vadera S, Englot DJ. Rates and predictors of seizure outcome after corpus callosotomy for drug-resistant epilepsy: a meta-analysis. J Neurosurg 2018; 130: 1-10
  • 83 Rich CW, Fasano RE, Isbaine F. et al. MRI-guided stereotactic laser corpus callosotomy for epilepsy: distinct methods and outcomes. J Neurosurg 2021; 135: 1-13
  • 84 Roland JL, Akbari SHA, Salehi A, Smyth MD. Corpus callosotomy performed with laser interstitial thermal therapy. J Neurosurg 2019; 134: 1-9
  • 85 Badger CA, Lopez AJ, Heuer G, Kennedy BC. Systematic review of corpus callosotomy utilizing MRI guided laser interstitial thermal therapy. J Clin Neurosci 2020; 76: 67-73
  • 86 Palma AE, Wicks RT, Popli G, Couture DE. Corpus callosotomy via laser interstitial thermal therapy: a case series. J Neurosurg Pediatr 2018; 23 (03) 303-307
  • 87 Chua MMJ, Bushlin I, Stredny CM, Madsen JR, Patel AA, Stone S. Magnetic resonance imaging-guided laser-induced thermal therapy for functional hemispherotomy in a child with refractory epilepsy and multiple medical comorbidities. J Neurosurg Pediatr 2020; 27 (01) 30-35
  • 88 Jermakowicz WJ, Kanner AM, Sur S. et al. Laser thermal ablation for mesiotemporal epilepsy: analysis of ablation volumes and trajectories. Epilepsia 2017; 58 (05) 801-810
  • 89 Ellis JA, Mejia Munne JC, Wang SH. et al. Staged laser interstitial thermal therapy and topectomy for complete obliteration of complex focal cortical dysplasias. J Clin Neurosci 2016; 31: 224-228
  • 90 Quadri SA, Waqas M, Khan I. et al. High-intensity focused ultrasound: past, present, and future in neurosurgery. Neurosurg Focus 2018; 44 (02) E16
  • 91 Abe K, Yamaguchi T, Hori H. et al. Magnetic resonance-guided focused ultrasound for mesial temporal lobe epilepsy: a case report. BMC Neurol 2020; 20 (01) 160
  • 92 Yamaguchi T, Hori T, Hori H. et al. Magnetic resonance-guided focused ultrasound ablation of hypothalamic hamartoma as a disconnection surgery: a case report. Acta Neurochir (Wien) 2020; 162 (10) 2513-2517
  • 93 Schröttner O, Eder HG, Unger F, Feichtinger K, Pendl G. Radiosurgery in lesional epilepsy: brain tumors. Stereotact Funct Neurosurg 1998; 70 (suppl 1): 50-56
  • 94 Heikkinen ER, Konnov B, Melnikov L. et al. Relief of epilepsy by radiosurgery of cerebral arteriovenous malformations. Stereotact Funct Neurosurg 1989; 53 (03) 157-166
  • 95 Régis J, Peragui JC, Rey M. et al. First selective amygdalohippocampal radiosurgery for ‘mesial temporal lobe epilepsy’. Stereotact Funct Neurosurg 1995; 64 (suppl 1): 193-201
  • 96 Cmelak AJ, Abou-Khalil B, Konrad PE, Duggan D, Maciunas RJ. Low-dose stereotactic radiosurgery is inadequate for medically intractable mesial temporal lobe epilepsy: a case report. Seizure 2001; 10 (06) 442-446
  • 97 Liang S, Liu T, Li A, Zhao M, Yu X, Qh O. Long-term follow up of very low-dose LINAC based stereotactic radiotherapy in temporal lobe epilepsy. Epilepsy Res 2010; 90 (1-2): 60-67
  • 98 Kawai K, Suzuki I, Kurita H, Shin M, Arai N, Kirino T. Failure of low-dose radiosurgery to control temporal lobe epilepsy. J Neurosurg 2001; 95 (05) 883-887
  • 99 Barbaro NM, Quigg M, Broshek DK. et al. A multicenter, prospective pilot study of gamma knife radiosurgery for mesial temporal lobe epilepsy: seizure response, adverse events, and verbal memory. Ann Neurol 2009; 65 (02) 167-175
  • 100 Gianaris T, Witt T, Barbaro NM. Radiosurgery for medial temporal lobe epilepsy resulting from mesial temporal sclerosis. Neurosurg Clin N Am 2016; 27 (01) 79-82
  • 101 Barbaro NM, Quigg M, Ward MM. et al. Radiosurgery versus open surgery for mesial temporal lobe epilepsy: the randomized, controlled ROSE trial. Epilepsia 2018; 59 (06) 1198-1207
  • 102 Régis J, Scavarda D, Tamura M. et al. Epilepsy related to hypothalamic hamartomas: surgical management with special reference to gamma knife surgery. Childs Nerv Syst 2006; 22 (08) 881-895
  • 103 Mathieu D, Deacon C, Pinard C-A, Kenny B, Duval J. Gamma Knife surgery for hypothalamic hamartomas causing refractory epilepsy: preliminary results from a prospective observational study: clinical article. J Neurosurg 2010; 113 (suppl): 215-221
  • 104 Castinetti F, Brue T, Morange I, Carron R, Régis J. Gamma Knife radiosurgery for hypothalamic hamartoma preserves endocrine functions. Epilepsia 2017; 58 (suppl 2): 72-76
  • 105 Régis J, Bartolomei F, de Toffol B. et al. Gamma knife surgery for epilepsy related to hypothalamic hamartomas. Neurosurgery 2000; 47 (06) 1343-1351 , discussion 1351–1352
  • 106 Wu C, Sperling MR, Falowski SM. et al. Radiosurgery for the treatment of dominant hemisphere periventricular heterotopia and intractable epilepsy in a series of three patients. Epilepsy Behav Case Rep 2012; 1: 1-6
  • 107 Irislimane M, Mathieu D, Bouthillier A, Deacon C, Nguyen DK. Gamma knife surgery for refractory insular cortex epilepsy. Stereotact Funct Neurosurg 2013; 91 (03) 170-176
  • 108 McGonigal A, Bartolomei F, Gavaret M, Chauvel P, Régis J. Gamma knife radiosurgery of paracentral epilepsy. Stereotact Funct Neurosurg 2014; 92 (06) 346-353
  • 109 Eder HG, Feichtinger M, Pieper T, Kurschel S, Schroettner O. Gamma knife radiosurgery for callosotomy in children with drug-resistant epilepsy. Childs Nerv Syst 2006; 22 (08) 1012-1017
  • 110 Smyth MD, Klein EE, Dodson WE, Mansur DB. Radiosurgical posterior corpus callosotomy in a child with Lennox-Gastaut syndrome. Case report. J Neurosurg 2007; 106 (suppl 4): 312-315
  • 111 Bodaghabadi M, Bitaraf MA, Aran S. et al. Corpus callosotomy with gamma knife radiosurgery for a case of intractable generalised epilepsy. Epileptic Disord 2011; 13 (02) 202-208
  • 112 Feichtinger M, Schröttner O, Eder H. et al. Efficacy and safety of radiosurgical callosotomy: a retrospective analysis. Epilepsia 2006; 47 (07) 1184-1191
  • 113 Rosenfeld JV. The evolution of treatment for hypothalamic hamartoma: a personal odyssey. Neurosurg Focus 2011; 30 (02) E1
  • 114 Delalande O, Fohlen M. Disconnecting surgical treatment of hypothalamic hamartoma in children and adults with refractory epilepsy and proposal of a new classification. Neurol Med Chir (Tokyo) 2003; 43 (02) 61-68
  • 115 Choi J-U, Yang KH, Kim TG. et al. Endoscopic disconnection for hypothalamic hamartoma with intractable seizure. Report of four cases. J Neurosurg 2004; 100 (suppl Pediatrics 5): 506-511
  • 116 Rekate HL, Feiz-Erfan I, Ng Y-T, Gonzalez LF, Kerrigan JF. Endoscopic surgery for hypothalamic hamartomas causing medically refractory gelastic epilepsy. Childs Nerv Syst 2006; 22 (08) 874-880
  • 117 Procaccini E, Dorfmüller G, Fohlen M, Bulteau C, Delalande O. Surgical management of hypothalamic hamartomas with epilepsy: the stereoendoscopic approach. Neurosurgery 2006; 59(4 suppl 2):ONS336–ONS344, discussion ONS344–ONS346
  • 118 Shim K-W, Chang JH, Park YG, Kim HD, Choi JU, Kim DS. Treatment modality for intractable epilepsy in hypothalamic hamartomatous lesions. Neurosurgery 2008; 62 (04) 847-856 , discussion 856
  • 119 Calisto A, Dorfmüller G, Fohlen M, Bulteau C, Conti A, Delalande O. Endoscopic disconnection of hypothalamic hamartomas: safety and feasibility of robot-assisted, thulium laser–based procedures: technical note. J Neurosurg Pediatr 2014; 14 (06) 563-572
  • 120 Ng Y-T, Rekate HL, Prenger EC. et al. Endoscopic resection of hypothalamic hamartomas for refractory symptomatic epilepsy. Neurology 2008; 70 (17) 1543-1548
  • 121 Ferrand-Sorbets S, Fohlen M, Delalande O. et al. Seizure outcome and prognostic factors for surgical management of hypothalamic hamartomas in children. Seizure 2020; 75: 28-33
  • 122 Rasmussen T. Hemispherectomy for seizures revisited. Can J Neurol Sci 1983; 10 (02) 71-78
  • 123 Delalande O, Bulteau C, Dellatolas G. et al. Vertical parasagittal hemispherotomy: surgical procedures and clinical long-term outcomes in a population of 83 children. Neurosurgery 2007; 60(2, suppl 1):ONS19–ONS32, discussion ONS32
  • 124 Villemure J-G, Mascott CR. Peri-insular hemispherotomy: surgical principles and anatomy. Neurosurgery 1995; 37 (05) 975-981
  • 125 Bahuleyan B, Manjila S, Robinson S, Cohen AR. Minimally invasive endoscopic transventricular hemispherotomy for medically intractable epilepsy: a new approach and cadaveric demonstration. J Neurosurg Pediatr 2010; 6 (06) 536-540
  • 126 Bahuleyan B, Vogel TW, Robinson S, Cohen AR. Endoscopic total corpus callosotomy: cadaveric demonstration of a new approach. Pediatr Neurosurg 2011; 47 (06) 455-460
  • 127 Chandra SP, Tripathi M. Endoscopic epilepsy surgery: emergence of a new procedure. Neurol India 2015; 63 (04) 571-582
  • 128 Sood S, Marupudi NI, Asano E, Haridas A, Ham SD. Endoscopic corpus callosotomy and hemispherotomy. J Neurosurg Pediatr 2015; 16 (06) 681-686
  • 129 Chandra PS, Subianto H, Bajaj J. et al. Endoscope-assisted (with robotic guidance and using a hybrid technique) interhemispheric transcallosal hemispherotomy: a comparative study with open hemispherotomy to evaluate efficacy, complications, and outcome. J Neurosurg Pediatr 2018; 23 (02) 187-197
  • 130 Luat AF, Asano E, Kumar A, Chugani HT, Sood S. Corpus callosotomy for intractable epilepsy revisited: the Children's Hospital of Michigan Series. J Child Neurol 2017; 32 (07) 624-629
  • 131 Mandel M, Figueiredo EG, Mandel SA, Tutihashi R, Teixeira MJ. Minimally invasive transpalpebral endoscopic-assisted amygdalohippocampectomy. Oper Neurosurg (Hagerstown) 2017; 13 (01) 2-14
  • 132 Park HH, Ronconi D, Hanakita S. et al. Endoscopic endonasal approach to the mesial temporal lobe: anatomical study and clinical considerations for a selective amygdalohippocampectomy. Acta Neurochir (Wien) 2020; 162 (04) 881-891