Klin Monbl Augenheilkd 2018; 235(04): 385-391
DOI: 10.1055/s-0043-121982
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Atropin zur Prävention der Myopieprogression – Datenlage, Nebenwirkungen, praktische Empfehlungen

Atropine for the Prevention of Progression in Myopia – Data, Side Effects, Practical Guidelines
Michael P. Schittkowski
1   Abteilung Augenheilkunde, Bereich Strabologie, Neuroophthalmologie und okuloplastische Chirurgie, Universitätsmedizin Göttingen, Göttingen
,
Veit Sturm
2   Abteilung für Strabologie und Neuroophthalmologie, Kantonsspital St. Gallen, St. Gallen, Schweiz
› Author Affiliations
Further Information

Publication History

eingereicht 19 September 2017

akzeptiert 16 October 2017

Publication Date:
21 December 2017 (online)

Zusammenfassung

Die Prävalenz der Myopie hat in den letzten Jahrzehnten weltweit zugenommen. In den südostasiatischen Metropolen werden Raten von ≥ 80% bei jungen Erwachsenen erreicht. Diese teilweise dramatische Zunahme ist vor allem den veränderten Lebensgewohnheiten geschuldet. Seit mehr als 100 Jahren weiß man um die hemmende Wirkung des Atropins auf die Myopieprogression. Obgleich der genaue Wirkungsmechanismus noch unbekannt ist, wurde in der letzten Dekade doch eine evidenzbasierte Behandlungsstrategie entwickelt. Atropintropfen können die Myopieprogression bei asiatischen Kindern im Mittel um − 0,54 Dioptrien (dpt)/Jahr und bei kaukasischen Kindern um − 0,35 dpt/Jahr mildern. Zu beachten ist jedoch eine Nichtansprechrate von ca. 10%. Die Behandlung sollte nur bei Schulkindern (Alter ≥ 6 Jahre) mit einer nachgewiesenen Progressionsrate von − 0,5 dpt im Vorjahr begonnen werden. Die zykloplegisch ermittelte Ausgangsrefraktion sollte zumindest − 2 dpt (sphärisches Äquivalent) betragen. Empfohlen wird die Applikation 0,01%iger Tropfen 1× am Abend vor dem Schlafengehen in den Bindehautsack. Die Therapie mit 0,01% gilt als gut verträglich und nebenwirkungsarm. Die Behandlung wird zunächst über 2 Jahre durchgeführt, da zum Teil im 2. Jahr eine bessere Effektivität erzielt wurde. Ein halbjährliches Kontrollintervall während der Behandlung mit jeweiliger Bestimmung der Refraktion in Zykloplegie und Messung der Achsenlänge wird empfohlen. Anschließend kann ein Auslassversuch erfolgen, wenn die Progression unter − 0,25 dpt/Jahr im 2. Jahr gefallen ist. Auch nach Therapieende sind weitere Kontrollen angezeigt, wobei eine erneute Behandlung bei einem neuerlichen Ansteigen der Progression über − 0,5 dpt/Jahr anzuraten ist. Ferner ist zu beachten, dass die Behandlung mit Atropinaugentropfen eine Off-Label-Anwendung darstellt.

Abstract

The prevalence of myopia has increased worldwide in recent decades. In East Asiaʼs metropolises ≥ 80% of young adults are affected. This dramatic increase is mainly caused by changes in lifestyle and behaviour. Atropine has been used for more than 100 years to arrest myopia progression. It has become an evidence-based treatment regimen in the last decade, although the exact mechanism of the effect of treatment is still unknown. Atropine eye drops can slow myopia progression by an average of − 0.54 dioptres (D)/year in Asian children and − 0.35 D/year in Caucasian children. However, a non-response rate of about 10% has been found. Treatment should be established in schoolchildren only (age ≥ 6 years) with myopia ≤ − 2 D (spherical equivalent, cycoplegic refraction) and with documented myopic progression of − 0.5 D in the preceding year. 0.01% eyedrops should be instilled into the lower fornix at bedtime. Atropine 0.01% therapy is well tolerated. Atropine is usually administered for 2 years since efficacy is somewhat better in the second year. During treatment, a 6-month follow-up with cycoplegic refraction and axial length measurement is recommended. After the 2-year period, atropine withdrawal is justified if progression is less than − 0.25 D/year in the second year. Even after atropine has been stopped, follow-up examinations are needed to detect any rebound. Atropine-therapy is resumed if progression is again higher than − 0.5 D/year. Topical atropine is used off-label.

 
  • Literatur

  • 1 Huang J, Wen D, Wang Q. et al. Efficacy comparison of 16 interventions for myopia control in children: A network meta-analysis. Ophthalmology 2016; 123: 697-708
  • 2 Lagreze WA, Joachimsen L, Schaeffel F. Current recommendations for deceleration of myopia progression. Ophthalmologe 2017; 114: 24-29
  • 3 Leo SWO. Scientific bureau of World Society of Paediatric, and strabismus. Current approaches to myopia control. Curr Opin Ophthalmol 2017; 28: 267-275
  • 4 Schaeffel F. Biological mechanisms of myopia. Ophthalmologe 2017; 114: 5-19
  • 5 Lagrèze WA, Schaeffel F. Preventing myopia. Dtsch Arztebl Int 2017; 114: 575-580
  • 6 Dolgin E. The myopia boom. Nature 2015; 519: 276-278
  • 7 Schaeffel F. Clinical risk factors for progressive myopia. Ophthalmologe 2012; 109: 738-748
  • 8 Pan CW, Dirani M, Cheng CY. et al. The age-specific prevalence of myopia in Asia: a meta-analysis. Optom Vis Sci 2015; 92: 258-266
  • 9 Vitale S, Sperduto RD. Ferris FL3rd. Increased prevalence of myopia in the United States between 1971–1972 and 1999–2004. Arch Ophthalmol 2009; 127: 1632-1639
  • 10 Wolfram C, Höhn R, Kottler U. et al. Prevalence of refractive errors in the European adult population: the Gutenberg Health Study (GHS). Br J Ophthalmol 2014; 98: 857-861
  • 11 Holden B, Sankaridurg P, Smith E. et al. Myopia, an underrated global challenge to vision: where the current data takes us on myopia control. Eye (Lond) 2014; 28: 142-146
  • 12 WHO. WHO-Angaben 2006. Im Internet: http://www.who.int/mediacentre/factsheets/fs282/en/ Stand: 29.12.2015
  • 13 Ziemssen F, Lagrèze W, Voykov B. Secondary diseases in high myopia. Ophthalmologe 2017; 114: 30-43
  • 14 Wong YL, Saw SM. Epidemiology of pathologic myopia in Asia and worldwide. Asia Pac J Ophthalmol (Phila) 2016; 5: 394-402
  • 15 Derby H. On the atropine treatment of acquired and progressive myopia. Trans Am Ophthalmol Soc 1874; 2: 139-154
  • 16 Pollock WBI. The reduction of myopia in children of school age. Glasgow Med J 1916; 86: 214-219
  • 17 Chua WH, Balakrishnan V, Chan YH. et al. Atropine for the treatment of childhood myopia. Ophthalmology 2006; 113: 2285-2291
  • 18 Tong L, Huang XL, Koh AL. et al. Atropine for the treatment of childhood myopia: effect on myopia progression after cessation of atropine. Ophthalmology 2009; 116: 572-579
  • 19 Chia A, Chua WH, Cheung YB. et al. Atropine for the treatment of childhood myopia: safety and efficacy of 0.5 %, 0.1 %, and 0.01 % doses (atropine for the treatment of myopia 2). Ophthalmology 2012; 119: 347-354
  • 20 Chia A, Chua WH, Wen L. et al. Atropine for the treatment of childhood myopia: changes after stopping atropine 0.01 %, 0.1 % and 0.5 %. Am J Ophthalmol 2014; 157: 451-457.e1
  • 21 Tan D, Tay SA, Loh KL. et al. Topical atropine in the control of myopia. Asia Pac J Ophthalmol (Phila) 2016; 5: 424-428
  • 22 Gong Q, Janowski M, Luo M. et al. Efficacy and adverse effects of atropine in childhood myopia: a meta-analysis. JAMA Ophthalmol 2017; 135: 624-630
  • 23 Li SM, Wu SS, Kang MT. et al. Atropine slows myopia progression more in Asian than white children by meta-analysis. Optom Vis Sci 2014; 91: 342-350
  • 24 Fan DS, Lam DS, Chan CK. et al. Topical atropine in retarding myopic progression and axial length growth in children with moderate to severe myopia: a pilot study. Jpn J Ophthalmol 2007; 51: 27-33
  • 25 Lee JJ, Fang PC, Yang IH. et al. Prevention of myopia progression with 0.05 % atropine solution. J Ocul Pharmacol Ther 2006; 22: 41-46
  • 26 Fang PC, Chung MY, Yu HJ. et al. Prevention of myopia onset with 0.025 % atropine in premyopic children. J Ocul Pharmacol Ther 2010; 26: 341-345
  • 27 Wu PC, Yang YH, Fang PC. The long-term results of using low-concentration atropine eye drops for controlling myopia progression in schoolchildren. J Ocul Pharmacol Ther 2011; 27: 461-466
  • 28 Mühlbauer B, Janhsen K, Pichler J. et al. Off-label use of prescription drugs in childhood and adolescence: an analysis of prescription patterns in Germany. Dtsch Arztebl Int 2009; 106: 25-31
  • 29 Loh KL, Lu Q, Tan D. et al. Risk factors for progressive myopia in the atropine therapy for myopia study. Am J Ophthalmol 2015; 159: 945-949
  • 30 Shih YF, Hsiao CK, Chen CJ. et al. An intervention trial on efficacy of atropine and multi-focal glasses in controlling myopic progression. Acta Ophthalmol Scand 2001; 79: 233-236
  • 31 Shih YF, Chen CH, Chou AC. et al. Effects of different concentrations of atropine on controlling myopia in myopic children. J Ocul Pharmacol Ther 1999; 15: 85-90
  • 32 Chia A, Lu QS, Tan D. Five-year clinical trial on atropine for the treatment of myopia 2: Myopia control with atropine 0.01 % eyedrops. Ophthalmology 2016; 123: 391-399
  • 33 Fan DS, Lam DS, Lam RF. et al. Prevalence, incidence, and progression of myopia of school children in Hong Kong. Invest Ophthalmol Vis Sci 2004; 45: 1071-1075
  • 34 Saw SM, Nieto FJ, Katz J. et al. Factors related to the progression of myopia in Singaporean children. Optom Vis Sci 2000; 77: 549-554
  • 35 Hirsch MJ. The changes in refraction between the ages of 5 and 14; theoretical and practical considerations. Am J Optom Arch Am Acad Optom 1952; 29: 445-459
  • 36 Hirsch MJ. Relationship between refraction on entering school and rate of change during the first six years of school – an interim report from the Ojai Longitudinal Study. Am J Optom Arch Am Acad Optom 1962; 39: 51-59
  • 37 Zadnik K, Mutti DO, Friedman NE. et al. Initial cross-sectional results from the Orinda Longitudinal Study of Myopia. Optom Vis Sci 1993; 70: 750-758
  • 38 Cooper J, Eisenberg N, Schulman E. et al. Maximum atropine dose without clinical signs or symptoms. Optom Vis Sci 2013; 90: 1467-1472
  • 39 Loughman J, Flitcroft DI. The acceptability and visual impact of 0.01 % atropine in a Caucasian population. Br J Ophthalmol 2016; 100: 1525-1529
  • 40 Barathi VA, Beuerman RW. Molecular mechanism of muscarinic receptors in mouse scleral fibroblast: prior to and after induction of experimental myopia with atropine treatment. Mol Vis 2011; 17: 680-692
  • 41 Qu J, Zhou X, Xie R. et al. The presence of m1 to m5 receptors in human sclera: evidence of the sclera as potential sites of action for muscarinic receptor antagonist. Curr Eye Res 2006; 31: 587-597
  • 42 Mitchelson F. Muscarinic receptor agonists and antagonist: effects on ocular function. Handb Exp Pharmacol 2012; 208: 263-298
  • 43 Barathi VA, Weon SR, Beuerman RW. Expression of muscarinic receptors in human and mouse sclera and their role in regulation of scleral fibroblast proliferation. Mol Vis 2009; 15: 1277-1293
  • 44 Stalmans I, Sunaric Mégevand G, Cordeiro MF. et al. Preservative-free treatment in glaucoma: who, when, and why. Eur J Ophthalmol 2013; 23: 518-525
  • 45 DʼAngelo G, Lambiase A, Cortes M. et al. Preservative-free diclofenac sodium 0.1 % for vernal keratoconjunctivitis. Graefes Arch Clin Exp Ophthalmol 2003; 241: 192-195
  • 46 Wang YR, Bian HL, Wang Q. Atropine 0.5 % eyedrops for the treatment of children with low myopia: A randomized controlled trial. Medicine (Baltimore) 2017; 96: e7371
  • 47 Galvis V, Tello A, Parra MM. et al. Topical atropine in the control of myopia. Med Hypothesis Discov Innov Ophthalmol 2016; 5: 78-88