Subscribe to RSS
DOI: 10.1055/s-0043-1775465
Modular Access to 1,3-Diboronates via Cu-Catalyzed Borylalkylation of Activated Alkenes
The authors are grateful for the financial support that was provided by the National Natural Science Foundation of China (Grant No. 22001203, 22471209), the Key Research and Development Projects of Shaanxi Province (Grant No. 2023-YBSF-186), the Youth Project of Basic Science Research Institute of Shaanxi Province (Grant No. 22JHQ013), the Fundamental Research Funds for the Central Universities (Grant No. xtr052024013, xyz2022023080), and the funds from Xi’an Jiaotong University (XJTU).

Abstract
1,3-Bis-(boryl)alkanes are useful building blocks in organic synthesis, which enables a series of functionalizations to build up molecular complexity for the synthesis of target molecules. However, modular and practical synthesis of such building blocks remains a challenge. Herein, we report an efficient method for the synthesis of 1,3-diboronates via Cu-catalyzed borylalkylation of alkenes using iodomethyl boronate as the electrophile. This reaction provides a wide range of 1,3-bis-(boryl)alkanes in high efficiency under simple reaction conditions. Notably, this reaction exhibits high modularity, and large-scale reaction further demonstrated its practicability.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0043-1775465.
- Supporting Information
Publication History
Received: 18 December 2024
Accepted after revision: 06 March 2025
Article published online:
17 July 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a
Suzuki A.
J. Organomet. Chem. 1999; 576: 147
MissingFormLabel
- 1b
Sandford C,
Aggarwal VK.
Chem. Commun. 2017; 53: 5481
MissingFormLabel
- 1c
Fyfe JW. B,
Watson AJ. B.
Chem 2017; 3: 31
MissingFormLabel
- 1d
Kaur P,
Khatik LG,
Nayak KS.
Curr. Org. Synth. 2017; 14: 665
MissingFormLabel
- 2a
Kabatas S,
Agüi-Gonzalez P,
Saal K.-A,
Jähne S,
Opazo F,
Rizzoli SO,
Phan NT. N.
Angew. Chem. Int. Ed. 2019; 58: 3438
MissingFormLabel
- 2b
Wade CR,
Broomsgrove AE. J,
Aldridge S,
Gabbaï FP.
Chem. Rev. 2010; 110: 3958
MissingFormLabel
- 2c
Fu Y,
Qiu F,
Zhang F,
Mai Y,
Wang Y,
Fu S,
Tang R,
Zhuang X,
Feng X.
Chem. Commun. 2015; 51: 5298
MissingFormLabel
- 3a
Grams RJ,
Santos WL,
Scorei IR,
Abad-García A,
Rosenblum CA,
Bita A,
Cerecetto H,
Viñas C,
Soriano-Ursúa MA.
Chem. Rev. 2024; 124: 2441
MissingFormLabel
- 3b
Messner K,
Vuong B,
Tranmer GK.
Pharmaceuticals 2022; 15: 264
MissingFormLabel
- 3c
Das BC,
Thapa P,
Karki R,
Schinke C,
Das S,
Kambhampati S,
Banerjee SK,
Van Veldhuizen P,
Verma A,
Weiss LM,
Evans T.
Future Med. Chem. 2013; 5: 653
MissingFormLabel
- 4a
Endo K,
Hirokami M,
Shibata T.
J. Org. Chem. 2010; 75: 3469
MissingFormLabel
- 4b
Coombs JR,
Zhang L,
Morken JP.
Org. Lett. 2015; 17: 1708
MissingFormLabel
- 4c
Shi Y,
Hoveyda AH.
Angew. Chem. Int. Ed. 2016; 55: 3455
MissingFormLabel
- 4d
Crudden CM,
Ziebenhaus C,
Rygus JP. G,
Ghozati K,
Unsworth PJ,
Nambo M,
Voth S,
Hutchinson M,
Laberge VS,
Maekawa Y,
Imao D.
Nat. Commun. 2016; 7: 11065
MissingFormLabel
- 4e
Ferris GE,
Hong K,
Roundtree IA,
Morken JP.
J. Am. Chem. Soc. 2013; 135: 2501
MissingFormLabel
- 5a
Nallagonda R,
Padala K,
Masarwa A.
Org. Biol. Chem. 2018; 16: 1050
MissingFormLabel
- 5b
Wu C,
Wang J.
Tetrahedron Lett. 2018; 59: 2128
MissingFormLabel
- 6a
Jiang X.-M,
Ji C.-L,
Ge J.-F,
Zhao J.-H,
Zhu X.-Y,
Gao D.-W.
Angew. Chem. Int. Ed. 2024; 63: e202318441
MissingFormLabel
- 6b
Viso A,
Fernández de la Pradilla R,
Tortosa M.
ACS Catal. 2022; 12: 10603
MissingFormLabel
- 6c
Carbó JJ,
Fernández E.
Chem. Commun. 2021; 57: 11935
MissingFormLabel
- 6d
Wang X,
Wang Y,
Huang W,
Xia C,
Wu L.
ACS Catal. 2021; 11: 1
MissingFormLabel
- 6e
Wen Y,
Deng C,
Xie J,
Kang X.
Molecules 2019; 24: 101
MissingFormLabel
- 7a
Fawcett A,
Nitsch D,
Ali M,
Bateman JM,
Myers EL,
Aggarwal VK.
Angew. Chem. Int. Ed. 2016; 55: 14663
MissingFormLabel
- 7b
Blair DJ,
Tanini D,
Bateman JM,
Scott HK,
Myers EL,
Aggarwal VK.
Chem. Sci. 2017; 8: 2898
MissingFormLabel
- 7c
Pujol A,
Whiting A.
J. Org. Chem. 2017; 82: 7265
MissingFormLabel
- 7d
Wang D,
Mück-Lichtenfeld C,
Studer A.
J. Am. Chem. Soc. 2020; 142: 9119
MissingFormLabel
- 7e
Tan BB,
Hu M,
Ge S.
Angew. Chem. Int. Ed. 2023; 62: e202307176
MissingFormLabel
- 8a
Schmidt J,
Choi J,
Liu AT,
Slusarczyk M,
Fu GC.
Science 2016; 354: 1265
MissingFormLabel
- 8b
Sun S.-Z,
Börjesson M,
Martin-Montero R,
Martin R.
J. Am. Chem. Soc. 2018; 140: 12765
MissingFormLabel
- 8c
Zhou J,
Wang D,
Xu W,
Hu Z,
Xu T.
J. Am. Chem. Soc. 2023; 145: 2081
MissingFormLabel
- 8d
Wang D,
Xu T.
Synlett 2023; 34: 2085
MissingFormLabel
- 9
You C,
Studer A.
Angew. Chem. Int. Ed. 2020; 59: 17245
MissingFormLabel
- 10
Sun S.-Z,
Talavera L,
Spieß P,
Day CS,
Martin R.
Angew. Chem. Int. Ed. 2021; 60: 11740
MissingFormLabel
- 11a
Hemming D,
Fritzemeier R,
Westcott SA. Santos W. L,
Steel PG.
Chem. Soc. Rev. 2018; 47: 7477
MissingFormLabel
- 11b
Yang X,
Kalita SJ,
Maheshuni S,
Huang YY.
Coord. Chem. Rev. 2019; 392: 35
MissingFormLabel
- 11c
Whyte A,
Torelli A,
Mirabi B,
Zhang A,
Lautens M.
ACS Catal. 2020; 10: 11578
MissingFormLabel
- 11d
Zhu Y.-S,
Li J.-X,
Zhao H.-T,
Su B.
Chin. J. Chem. 2024; 42: 3588
MissingFormLabel
- 11e
Chen B,
Cao P,
Liao Y,
Wang M,
Liao J.
Org. Lett. 2018; 20: 1346
MissingFormLabel
- 11f
Ito H,
Kosaka Y,
Nonoyama K,
Sasaki Y,
Sawamura M.
Angew. Chem. Int. Ed. 2008; 47: 7424
MissingFormLabel
- 11g
Zhong C,
Kunii S,
Kosaka Y,
Sawamura M,
Ito H.
J. Am. Chem. Soc. 2010; 132: 11440
MissingFormLabel
- 11h
Su W,
Gong T.-J,
Lu X,
Xu M.-Y,
Yu C.-G,
Xu Z.-Y,
Yu H.-Z,
Xiao B,
Fu Y.
Angew. Chem. Int. Ed. 2015; 54: 12957
MissingFormLabel
- 12
Larouche-Gauthier R,
Elford TG. Aggarwal V. K.
J. Am. Chem. Soc. 2011; 133: 16794
MissingFormLabel
- 13
Armstrong RJ,
Niwetmarin W,
Aggarwal VK.
Org. Lett. 2017; 19: 2762
MissingFormLabel
Selected reviews:
Selected examples: