Synthesis, Table of Contents PAPER© Georg Thieme Verlag Stuttgart · New YorkTransition Metal-Promoted Synthesis of Functionalized and Unfunctionalized PyridylallenesAxel Jansen, Norbert Krause*Organic Chemistry II, Dortmund University, 44221 Dortmund, GermanyFax: +49(231)7553884; e-Mail: norbert.krause@uni-dortmund.de; Recommend Article Abstract Buy Article(opens in new window) All articles of this category(opens in new window) Abstract The SN2′-substitution of several functionalized and unfunctionalized pyridyl-substituted propargylic acetates with the magnesium cuprate MeMgCl·CuI·LiBr and with phenylzinc chloride in the presence of catalytic amounts of Pd(PPh3)4 is examined. The copper-mediated substitution gives the desired pyridylallenes with good yield only if chelate formation between substrate and cuprate is not possible. In contrast, both chelating and non-chelating propargylic acetates can be converted efficiently into the corresponding pyridyl allenes under palladium catalysis. Key words allenes - copper - zinc - palladium - pyridines Full Text References References <A NAME="RCO3002SS-1">1</A> Thorand S. Vögtle F. Krause N. Angew. Chem. Int. Ed. 1999, 38: 3721 ; Angew. Chem. 1999, 111, 3929 <A NAME="RCO3002SS-2A">2a</A> Macdonald TL. Reagan DR. J. Org. Chem. 1980, 45: 4740 <A NAME="RCO3002SS-2B">2b</A> Laux M. Krause N. Koop U. Synlett 1996, 86 For 2-allenyl-substituted pyridines, see: <A NAME="RCO3002SS-3A">3a</A> Cherkasov LN. Bal’yan KV. Russ. J. Org. Chem. 1965, 1: 1843 <A NAME="RCO3002SS-3B">3b</A> Al-Arnaout A. Courtois G. Miginiac L. J. Organomet. Chem. 1987, 333: 139 <A NAME="RCO3002SS-3C">3c</A> Schmittel M. Strittmatter M. Vollmann K. Kiau S. Tetrahedron Lett. 1996, 37: 999 <A NAME="RCO3002SS-3D">3d</A> Langer P. Doering M. Seyferth D. Goerls H. Chem.-Eur. J. 2001, 7: 573 For 3-allenyl-substituted pyridines, see: <A NAME="RCO3002SS-4A">4a</A> Birtwistle I. Rogers V. J. Chem. Soc. Perkin Trans. 1 1987, 1347 <A NAME="RCO3002SS-4B">4b</A> Reynolds KA. Dopico P. Brody MS. Finn MG. J. Org. Chem. 1997, 62: 2564 <A NAME="RCO3002SS-4C">4c</A> Grigg R. Monteith M. Sridharan V. Terrier C. Tetrahedron 1998, 54: 3885 <A NAME="RCO3002SS-5">5</A>For 4-allenyl-substituted pyridines, see: <A NAME="RCO3002SS-5">5</A> Chan PCY. Jarman M. Wang MF. Potter GA. Tetrahedron Lett. 2000, 41: 2447 <A NAME="RCO3002SS-6A">6a</A> Luong TJ. Linstrumelle G. Tetrahedron Lett. 1980, 21: 5019 <A NAME="RCO3002SS-6B">6b</A> Ruitenberg K. Kleijn H. Elsevier CJ. Meijer J. Vermeer P. Tetrahedron Lett. 1981, 22: 1451 <A NAME="RCO3002SS-6C">6c</A> Elsevier CJ. Stehouwer PM. Westmijze H. Vermeer P. J. Org. Chem 1983, 48: 1103 <A NAME="RCO3002SS-6D">6d</A> Keinan E. Bosch E. J. Org. Chem. 1986, 51: 4006 <A NAME="RCO3002SS-6E">6e</A> Konno T. Tanikawa M. Ishihara T. Yamanaka H. Chem. Lett. 2000, 1360 <A NAME="RCO3002SS-7">7</A> Krause N. Seebach D. Chem. Ber. 1987, 120: 1845 <A NAME="RCO3002SS-8A">8a</A> Höfle G. Steglich W. Synthesis 1972, 619 <A NAME="RCO3002SS-8B">8b</A> Höfle G. Steglich W. Vorbrüggen H. Angew. Chem. Int. Ed. Engl. 1978, 17: 569 ; Angew. Chem. 1978, 90, 602 <A NAME="RCO3002SS-9">9</A> Bolm C. Ewald M. Felder M. Schlinghoff G. Chem. Ber. 1992, 125: 1169 <A NAME="RCO3002SS-10">10</A> Parks JE. Wagner BE. Holm RH. Inorg. Chem. 1971, 10: 2472