Synlett 2003(12): 1783-1788  
DOI: 10.1055/s-2003-41492
LETTER
© Georg Thieme Verlag Stuttgart · New York

Pd-Catalyzed Cross-Coupling of Haloarenes and Chloroarene-Cr(CO)3 Complexes with Stabilized Vinyl- and Allylaluminium Reagents

Herbert Schumann*a, Jens Kaufmanna, Hans-Günther Schmalz*b, Andreas Böttcherb, Battsengel Gotovb
Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
Fax: +49(30)31422168; e-Mail: schumann@chem.tu-berlin.de;
Institut für Organische Chemie, Universität zu Köln, Greinstraße 4, 50939 Köln, Germany
Fax: +49(221)4703064; e-Mail: schmalz@uni-koeln.de;
Further Information

Publication History

Received 11 June 2003
Publication Date:
19 September 2003 (online)

Abstract

The palladium-catalyzed cross-coupling of intramolecularly stabilized divinyl- and diallylaluminium compounds 1 and 2 with haloarenes and chloroarene-Cr(CO)3 complexes has been studied. The coupling products were obtained in high yields (up to 98%) under relatively mild conditions (40-60 °C in THF, 3-12 h) in the presence of 5-10 mol% of PdCl2(PPh3)2.

    References

  • 1a Diederich F. Stang PJ. Metal-Catalyzed Cross-Coupling Reactions   VCH; Weinheim: 1998. 
  • 1b Tsuji J. Palladium Reagents and Catalysis   Wiley and Sons; Chichester: 1995. 
  • 2 Stille JK. Angew. Chem., Int. Ed. Engl.  1986,  25:  508 
  • For reviews, see:
  • 3a Miyaura N. Suzuki A. Chem. Rev.  1995,  95:  2457 
  • 3b Suzuki A. Metal-Catalyzed Cross-Coupling Reaction   Diederich F. Stang PJ. VCH; Weinheim: 1998.  p.48 
  • 4 Negishi E. Organozinc Reactions   Knochel P. Jones P. Oxford University Press; Oxford, UK: 1999.  Chap. 11.
  • 5 Kumada M. Pure Appl. Chem.  1980,  52:  669 
  • 6a Gotov B. Kaufmann J. Schumann H. Schmalz H.-G. Synlett  2002,  361 
  • 6b Gotov B. Kaufmann J. Schumann H. Schmalz H.-G. Synlett  2002,  1 
  • 6c Blum J. Katz JA. Jaber N. Michmann M. Schumann H. Schutte S. Kaufmann J. Wassermann BC. J. Mol. Catal. A: Chem.  2001,  165:  97 
  • 6d Baidossi W. Blum J. Frick M. Gelmann D. Heymer B. Schumann H. Schutte S. Shakh E. Organic Synthesis via Organometallics, OSM 5   Helmchen G. Dibo J. Flubach D. Vieweg & Sohn; Braunschweig: 1997.  p.51 
  • 6e Blum J. Berlin O. Milstein D. Ben-David Y. Wassermann BC. Schutte S. Schumann H. Synthesis  2000,  571 
  • 6f Gelmann D. Schumann H. Blum J. Tetrahedron Lett.  2000,  41:  7555 
  • 6g Blum J. Gelmann D. Baidossi W. Shakh E. Rosenfeld A. Aizenshtat Z. Wassermann BC. Frick M. Heymer B. Schutte S. Wernik S. Schumann H. J. Org. Chem.  1997,  62:  8681 
  • 6h Gelman D. Dechert S. Schumann H. Blum J. Inorg. Chim. Acta  2002,  334:  14 
  • 6i Blum J. Gelmann D. Aizenshtat Z. Wernik S. Schumann H. Tetrahedron Lett.  1998,  39:  5611 
  • 6j Schumann H. Kaufmann J. Wassermann BC. Girgdies F. Jaber N. Blum J. Z. Anorg. Allg. Chem.  2002,  628:  971 
  • 7 Schumann H. Kaufmann J. Dechert S. Schmalz H.-G. Velder J. Tetrahedron Lett.  2001,  42:  5405 
  • 8 Schumann H. Kaufmann J. Dechert S. Schmalz H.-G. Tetrahedron Lett.  2002,  43:  3507 
  • 10 See for instance: Wilhelm R. Widdowson DA. J. Chem. Soc., Perkin Trans. 1  2000,  3808 
  • For typical reactions and synthetic applications of styrene Cr(CO)3 derivatives, see:
  • 11a Semmelhack MF. Seufert W. Keller L. J. Am. Chem. Soc.  1980,  102:  6584 
  • 11b Davies SG. Furtado OMLR. Hepworth D. Loveridge T. Synlett  1995,  69 
  • 11c Gibson SE. Gil R. Prechtl F. White AJP. Williams DJ. J. Chem. Soc., Perkin Trans. 1  1996,  1007 
  • 11d Dehmel F. Schmalz H.-G. Org. Lett.  2001,  3:  3579 
  • 11e Dehmel F. Lex J. Schmalz H.-G. Org. Lett.  2002,  4:  3915 
  • For a review about CAr-Cl bond activation through Cr(CO)3 complexation, see:
  • 15a Carpentier J.-F. Petit F. Mortreux A. Dufaud V. Basset J.-M. Thivolle-Cazat J. J. Mol. Catal.  1993,  81:  1 
  • 15b For some recent work, see: Müller TJJ. Ansorge M. Aktah D. Angew. Chem.  2000,  112:  1323 
  • 15c Crousse B. Xu L.-H. Bernardinelli G. Kündig EP. Synlett  1998,  658 
  • 15d Bräse S. Tetrahedron Lett.  1999,  40:  6757 
  • 21 Uemura M. Nishimura H. Hayashi T. J. Organomet. Chem.  1994,  473:  129 
9

Typical experimental procedure: The vinylaluminium reagent 1 (0.21 mg, 1.25 mmol), PdCl2(PPh3)2 (5 mol%, 0.06 mmol), and 2-bromonaphthalene(3) (0.26 g, 1.25 mmol) were placed in a flame dried Schlenk-flask equipped with a reflux condenser, evacuated and flushed with N2. Deoxygenated anhyd THF (20 mL) was added via syringe. The reaction mixture was stirred at 60 °C for 12 h under a N2 atmosphere, cooled to ambient temperature, diluted with n-hexane (20 mL), filtered trough a short pad of silica gel, washed with hexane and concentrated under reduced pressure. The residue was purified by chromatography on silica gel (20 g) with n-hexane-ethyl acetate = 10:1 to give the product 4 as (0.19 g, 1.23 mmol, 98%) a colorless oil. 1H NMR (CDCl3, 200 MHz): δ = 8.27-8.32 (m, 1 H, H aryl), 7.93-8.04 (m, 2 H, H aryl), 7.80 (m, 1 H, H aryl), 7.57-7.72
(m, 4 H, H aryl, -CH=CH2), 5.97 (dd, 1 H, J = 1.58, 17.3 Hz,
-CH=CHH trans ), 5.65 (dd, 1 H, J = 1.58, 10.9 Hz,
-CH=CH cis H). 13C NMR (CDCl3, 50 MHz): δ = 135.5, 134.3 (C q), 133.6 (-CH=CH2), 131.1 (C q), 128.5, 128.1, 126.0, 125.7, 125.6, 123.7, 123.6 (C aryl), 116.97 (-CH=CH2).

12

Typical experimental procedure: η 6 -(Vinylbenzene)-tricarbonylchromium(0) ( 28). η6-(Chlorobenzene)tricar-bonylchromium(0)(23) (124.3 mg, 0.5 mmol), vinylalane 1 (84.6 mg, 0.5 mmol) and PdCl2(PPh3)2 (17.6 mg, 0.025 mmol) were placed under Ar in a flame dried Schlenk flask equipped with a reflux condenser. Deoxygenated anhydrous THF (5.0 mL) was added via a syringe and the reaction mixture was degassed three times. After stirring at 40 °C for 3 h the reaction mixture was cooled in an ice-bath, diluted with n-hexane (5 mL), filtered through a short column of silica gel (30 × 50 mm), eluted with n-hexane-MTBE = 8:1 (40 mL) and finally with n-hexane-MTBE = 4:1 (40 mL). Upon concentration of the filtrate the obtained orange-yellowish solid was recrystallized from MTBE-n-hexane to afford 28 (114.3 mg, 0.476 mmol, 95.2%) as yellow-orange crystals.

13

η 6 -(Vinylbenzene)tricarbonylchromium(0) ( 28). 1H NMR (C6D6, 250 MHz): δ = 5.69 (dd, 1 H, J = 10.9, 17.5 Hz, -CH=CH2), 5.11 (d, 1 H, J = 17.5 Hz, -CH=CHH trans ), 4.85 (d, 1 H, J = 10.9 Hz, -CH=CH cis H), 4.53 (ψd, 2 H, H aryl), 4.43 (ψt, 2 H, H aryl), 4.30 (m, 1 H, H aryl). 13C NMR (C6D6,
63 MHz): δ = 233.2 (CO), 133.7 (-CH=CH2), 115.8
(-CH=CH2), 105.3 (C q), 92.5, 90.9, 90.3 (C aryl). Mp 80 °C (lit. [21] 79-80 °C).

14

η 6 -(4-Methyl-1-vinylbenzene)tricarbonylchromium(0) ( 29). 1H NMR (C6D6, 250 MHz): δ = 5.73 (dd, 1 H, J = 10.9, 17.5 Hz, -CH=CH2), 5.16 (d, 1 H, J = 17.5 Hz,
-C=CHH trans ), 4.84 (d, 1 H, J = 10.9 Hz, -CH=CH cis H), 4.77 (d, 2 H, J = 6.3 Hz, H aryl), 4.36 (d, 2 H, J = 6.3 Hz). 13C NMR (C6D6, 63 MHz): δ = 233.5 (CO), 133.4 (-CH=CH2), 114.9 (-CH=CH2), 108.0, 102.7 (C q), 92.5, 91.9 (C aryl), 19.9 (Ar-CH3). Mp 80 °C.

16

η 6 -(1-Chloro-2-vinylbenzene)tricarbonylchromium(0) ( 30). 1H NMR (CDCl3, 250 MHz): δ = 6.75 (dd, 1 H, J = 10.9, 17.4 Hz, -CH=CH2), 5.72 (d, 1 H, J = 17.4 Hz,
-C=CHH trans ), 5.72 (dd, 1 H, H aryl), 5.49 (dd, 1 H, H aryl), 5.43 (d, 1 H, J = 10.9 Hz, -CH=CH cis H), 5.39-5.34 (m, 1 H, H aryl), 5.16-5.10 (m, 1 H, H aryl). 13C NMR (CDCl3, 63 MHz): δ = 231.5 (CO), 130.5 (-CH=CH2), 117.9 (-CH=CH2), 102.6 (C q), 91.8, 91.6 (C aryl), 90.2 (C q), 89.4, 88.8 (C aryl). Mp 73 °C.

17

η 6 -(1,2-Divinylbenzene)tricarbonylchromium(0) ( 31). 1H NMR (CDCl3, 250 MHz) δ = 6.62 (dd, 2 H, J = 10.9, 17.3 Hz, -CH=CH2), 5.64 (d, 2 H, J = 17.3 Hz, -CH=CHH trans ), 5.54-5.49 (m, 2 H, H aryl), 5.41 (d, 2 H, J = 10.9 Hz,
-CH=CH cis H), 5.37-5.34 (m, 2 H, H aryl). 13C NMR (CDCl3, 63 MHz) δ = 232.8 (CO), 131.7 (-CH=CH2), 188.8
(-CH=CH2), 105.1 (C q), 91.6, 90.2 (C aryl). Mp 85 °C.

18

η 6 -(1-Chloro-2-methyl-3-vinylbenzene)tricarbonyl-chromium(0) ( 32). 1H NMR (C6D6, 300 MHz) δ = 6.12 (dd, 1 H, J = 11.0, 17.2 Hz, -CH=CH2), 5.07 (d, 1 H, J = 17.2,
-CH=CHH trans ), 4.92 (d, 1 H, J = 11.0 Hz, -CH=CH cis H), 4.81 (m, 1 H, H aryl ), 4.50 (m, 1 H, H aryl ), 4.34 (m, 1 H, H aryl ), 1.84 (s, 1 H, Ar-CH 3 ). 13C NMR (C6D6, 75 MHz) δ = 232.5 (CO), 132.2 (-CH=CH2), 119.0 (-CH=CH2), 112.7, 106.0, 104.1 (C q ), 91.9, 90.5, 88.1 (C q ), 1.84 (Ar-CH3). (Shifts were taken from crude product NMR).

19

η 6 -(1-Methyl-2,6-divinylbenzene)tricarbonyl-chromium(0) ( 33). 1H NMR (C6D6, 250 MHz) δ = 6.20 (dd, 2 H, J = 10.9, 17.1 Hz, -CH=CH2), 5.16 (d, 2 H, J = 17.1 Hz, -CH=CHH trans ), 4.96-4.91 (m, 4 H, H aryl, -CH=CH cis H), 4.51 (t, 1 H, J = 6.6 Hz), 1.70 (s, 3 H, Ar-CH 3). 13C NMR (C6D6, 63 MHz) δ = 233.6 (CO), 132.8 (-CH=CH2), 118.1 (-CH=CH2), 105.7, 105.5 (C q), 91.1, 90.0 (C aryl), 14.8 (Ar-CH3). Mp 85 °C.

20

η 6 -(2-Methyl-3-vinyl-methylbenzoate)tricarbonyl-chromium(0) ( 34) 1H NMR (C6D6, 250 MHz) δ = 6.10 (dd, 1 H, J = 10.7, 17.1 Hz, -CH=CH2), 5.62 (dd, 1 H, J = 1.2, 6.6 Hz, H aryl), 5.11 (dd, 1 H, J = 0.8, 17.1 Hz, -CH=CHH trans ), 5.05 (ddbr, 1 H, J = 1.2, 6.6 Hz, H aryl), 4.87 (dd, 1 H, J = 0.7, 10.7 Hz, -CH=CH cis H), 4.27 (ψt, 1 H, J = 6.6 Hz, H aryl), 3.30 (s, 3 H, OCH 3), 2.29 (s, 3 H, Ar-CH 3). 13C NMR (C6D6, 63 MHz) δ = 231.8 (CO), 166.4 (CO2CH3), 132.3 (-CH=CH2), 118.4 (-CH=CH2), 109.0, 104.6 (C q), 95.8, 93.7 (C aryl), 92.0 (C q), 87.3 (C aryl), 52.1 (OCH3), 16.3 (Ar-CH3). Mp 50 °C.