References
<A NAME="RZ14903SS-1A">1a</A>
The Chemistry of Organophosphorus Compounds
Vol. 1-4:
Hartley FR.
Wiley;
Chichester:
1990-1996.
<A NAME="RZ14903SS-1B">1b</A>
Quin LD.
A Guide to Organophosphorus Chemistry
Wiley;
New York:
2000.
<A NAME="RZ14903SS-1C">1c</A>
Houben-Weyl, Methoden der organischen Chemie
Part 2, Vol. 5:
Müller E.
Thieme Verlag;
Stuttgart:
1977.
<A NAME="RZ14903SS-2A">2a</A>
Taylor NJ.
Carty AJ.
J. Chem. Soc., Dalton Trans.
1976,
799
<A NAME="RZ14903SS-2B">2b</A>
Carty AJ.
Jacobson SE.
Taylor NJ.
J. Am. Chem. Soc.
1975,
97:
7254
<A NAME="RZ14903SS-2C">2c</A>
Carty AJ.
Johnson DK.
Jacobson SE.
J. Am. Chem. Soc.
1979,
101:
5612
<A NAME="RZ14903SS-2D">2d</A>
Liu X.
Mok KF.
Leung P.-H.
Organometallics
2001,
20:
3918
<A NAME="RZ14903SS-3A">3a</A>
Liu X.
Ong TKW.
Selvaratnam S.
Vittal JJ.
White AJP.
Williams DJ.
Leung P.-H.
J. Organomet. Chem.
2002,
643:
4
<A NAME="RZ14903SS-3B">3b</A>
Markl G.
Matthes D.
Angew. Chem., Int. Ed. Engl.
1972,
11:
1019
<A NAME="RZ14903SS-4A">4a</A>
Berenguer J.
Bernechea M.
Fornies J.
Gomez J.
Lalinde E.
Organometallics
2002,
21:
2314
<A NAME="RZ14903SS-4B">4b</A>
Davies JE.
Mays MJ.
Raithby PR.
Sarveswaran K.
Solan GA.
J. Chem. Soc., Dalton Trans.
2001,
1269
<A NAME="RZ14903SS-4C">4c</A>
Louattani E.
Suades J.
J. Organomet. Chem.
2000,
604:
234
<A NAME="RZ14903SS-4D">4d</A>
Moldes I.
Ros J.
Inorg. Chim. Acta
1995,
232:
75
<A NAME="RZ14903SS-5A">5a</A>
Edwards AJ.
Macgregor SA.
Rae AD.
Wenger E.
Willis AC.
Organometallics
2001,
20:
2864
<A NAME="RZ14903SS-5B">5b</A>
Davies JE.
Mays MJ.
Raithby PR.
Sarveswaran K.
Solan GA.
J. Chem. Soc., Dalton Trans
2000,
3331
<A NAME="RZ14903SS-5C">5c</A>
Bennett MA.
Cobley CJ.
Rae AD.
Wenger E.
Willis AC.
Organometallics
2000,
19:
1522
<A NAME="RZ14903SS-5D">5d</A>
Miquel Y.
Cadierno V.
Donnadieu B.
Igau A.
Majoral J.-P.
Organometallics
2000,
19:
54
<A NAME="RZ14903SS-5E">5e</A>
Rosa P.
Le Floch P.
Ricard L.
Mathey F.
J. Am. Chem. Soc.
1997,
119:
9417
<A NAME="RZ14903SS-5F">5f</A>
Lang H.
Winter M.
Leise M.
Zsolnai L.
Buechner M.
Huttner G.
J. Organomet. Chem.
1997,
533:
167
<A NAME="RZ14903SS-5G">5g</A>
Miquel Y.
Igau A.
Donnadieu B.
Majoral J.-P.
Dupuis L.
Pirio N.
Meunier P.
Chem. Commun.
1997,
279
<A NAME="RZ14903SS-6A">6a</A>
Low PJ.
Hayes TM.
Udachin KA.
Goeta AE.
Howard JAK.
Enright GD.
Carty AJ.
J. Chem. Soc., Dalton Trans.
2002,
1455
<A NAME="RZ14903SS-6B">6b</A>
Jeffery JC.
Pereira RMS.
Vargas MD.
Went MJ.
J. Chem. Soc., Dalton Trans.
1995,
1805
<A NAME="RZ14903SS-6C">6c</A>
Benvenutti MHA.
Vargas MD.
Braga D.
Grepioni F.
Parisini E.
Mann BE.
Organometallics
1993,
12:
2955
<A NAME="RZ14903SS-6D">6d</A>
Imhof W.
Eber B.
Huttner G.
Emmerich Ch.
J. Organomet. Chem.
1993,
447:
21
<A NAME="RZ14903SS-6E">6e</A>
Cherkas AA.
Taylor NJ.
Carty AJ.
J. Chem. Soc., Chem. Commun.
1990,
385
<A NAME="RZ14903SS-6F">6f</A>
Sappa E.
Pasquinelli G.
Tiripicchio A.
Tiripicchio CM.
J. Chem. Soc., Dalton Trans.
1989,
601
<A NAME="RZ14903SS-6G">6g</A>
Van Gastel F.
MacLaughlin SA.
Lynch M.
Carty AJ.
Sappa E.
Tiripicchio A.
Camellini MT.
J. Organomet. Chem.
1987,
326:
C65
<A NAME="RZ14903SS-7">7</A>
Beletskaya IP.
Afanasiev VV.
Kazankova MA.
Efimova IV.
Org. Lett.
2003,
5: 4309
<A NAME="RZ14903SS-8">8</A>
Handbook of Organopalladium Chemistry for Organic Synthesis
Negishi E.
Wiley-VCH;
New York:
2002.
<A NAME="RZ14903SS-9">9</A>
As found from X-ray data (Figure
[1]
), the copper atom in the structure of (Ph2PCl)3CuI adopts a tetrahedral coordination. The copper and chlorine atoms are situated
on either sides of the plane of phosphorus atoms. The Cu(1) atom is deviated from
the plane of P(1), P(2) and P(3) atoms to 0.75 Å. Also, the chlorine atoms are antiperiplanar
to the iodine atom, the torsion angle ClPCuI is equal to 167° on an average. X-ray
investigation of structure 1 was carried out on Bruker Smart CCD 1000 diffractometer at 293 K. Crystals are monoclinic,
a = 20.381(4), b = 9.462(2), 20.411(4) Å, β = 112.395(4)°, space group P21/c, Z = 4 M = 852.3, F(000) = 1696, µ[MoK& agr;] = 18.25 cm-1. Intensities of 27979 reflections were measured and 10473 independent reflections
were used for further refinement. The refinement was converged to wR2 = 0.0623 and GOF = 0.980 for all independent reflections [R1 = 0.0325 was calculated against F2 for 5790 observed reflections with I > 2 σ(I)].
Experimental and crystal data were submitted to Cambridge Crystallographic Data Centre.
<A NAME="RZ14903SS-10A">10a</A>
Stephens RD.
Castro CE.
J. Org. Chem.
1963,
28:
2163
<A NAME="RZ14903SS-10B">10b</A>
Stephens RD.
Castro CE.
J. Org. Chem.
1963,
28:
3313
<A NAME="RZ14903SS-10C">10c</A>
Castro CE.
Gaughan EJ.
Owsley DC.
J. Org. Chem.
1966,
31:
4071
<A NAME="RZ14903SS-11">11</A>
For example: 2-(2-Pyridyl)ethynyldiphenylphosphane(3g): Yield: 93%; light yellow solid; mp 32 °C. 31P{H} NMR (162.6 MHz, CDCl3): δ = -34.44 (s). 1H NMR (400 MHz, CDCl3): δ = 6.98 (m, 1 H), 7.19 (m, 1 H), 7.21 (m, 7 H), 7.37 (m, 1 H), 7.61 (dt, 4 H,
J = 1.4 Hz), 8.43 (m, 1 H). 13C NMR (100.6 MHz, CDCl3): δ = 86.11 (d, J = 9.8 Hz), 106.22, 122.74, 126.78, 128.15 (d, J = 7.6 Hz), 128.69, 132.30 (d, J = 21.3 Hz), 134.79 (d, J = 7.5 Hz), 135.55, 142.04, 149.46. (3-Methoxyprop-1-ynyl)(diphenyl)phosphane(3j): Yield: 49%; light yellow oil; bp 160 °C/0.1 Torr. 31P{H} NMR (162.6 MHz, CDCl3): δ = -34.62 (s). 1H NMR (400 MHz, CDCl3): δ = 3.31 (s, 3 H), 4.17 (s, 2 H), 7.24 (m, 6 H), 7.61 (dt, 4 H, J = 1.7 Hz). 13C NMR (100.6 MHz, CDCl3): δ = 57.23, 60.20, 83.22 (d, J = 7.6 Hz), 104.36, 128.26 (d, J = 7.6 Hz), 128.72, 132.14 (d, J = 21.3 Hz), 135.59.