Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2005(6): 1042-1043
DOI: 10.1055/s-2005-864829
DOI: 10.1055/s-2005-864829
SPOTLIGHT
© Georg Thieme Verlag Stuttgart · New York
Nickel Acetyl Acetonate [Ni(acac)2]
Further Information
Publication History
Publication Date:
23 March 2005 (online)
Biographical Sketches
Introduction
Nickel acetyl acetonate is also known as bis(acetylacetonato) nickel(II ). It has been used as a catalyst for oligomerization, telomerization, hydrosilylation, reduction, cross-coupling, oxidation, conjugate addition, addition to multiple bonds and rearrangement reactions. It is a pale green solid (mp = 240 °C) that is soluble in ethers and aromatic and halogenated hydrocarbons.
Preparation
Ni(acac)2 is commercially available. Alternatively, it can be prepared from potassium acetylacetonate and nickel(II ) chloride by stirring for 30 minutes at room temperature in absolute ethanol. [1]
Abstracts
(A) Ni(acac)2-catalyzed couplings of enones, alkynes and main-group organometallic reagents generate acyclic structures in an efficient manner. Ikeda et al. produced conjugated enynes from acetylenic tin reagents. [2] [3] |
|
(B) Ni(acac)2 is used in InI-mediated direct allylation of carbonyl compounds with allylic alcohols. [4] The reaction proceeded smoothly with catalytic amounts of Ni(acac)2 and PPh3 to give the corresponding homoallylic alcohols in high yields. [5] |
|
(C) Intermolecular coupling of an electron-deficient olefin with a strained olefin using Ni(acac)2 and a modified chiral monodentate oxazoline provides good yields and enantioselectivity. [6] [7] |
|
(D) Ni(acac)2-catalyzed cross-coupling between two sp3 carbon centers allows the synthesis of polyfunctional products. [8] |
|
(E) Ni(acac)2 promotes the coupling of alkenes with aldehydes in the presence of triethylborane or diethylzinc as reducing agents. [9] Triethylborane-mediated couplings work mainly for aromatic and unsaturated aldehydes, whereas diethylzinc-promoted couplings work best for aliphatic aldehydes and ketones. The reactions proceed well in water or in alcoholic solvents. [10] |
|
(F) Ni(acac)2-assisted coupling of 1,7-diynes with silanes produces six-membered ring products with a Z-configured vinyl silane moiety. [11] |
|
(G) Takimoto and Mori developed the Ni(acac)2-assisted coupling of 1,3-dienes, CO2, and an organozinc reagent, allowing easy assembly of densely functionalized rings. [12] Terao et al. developed comparable multi-component coupling of two dienes, a silyl chloride, and a Grignard reagent. [13] The procedure has been extended to asymmetric variants. [14] |
|
- 1
Canoira L.Rodriguez JG. J. Heterocycl. Chem. 1985, 22: 1511 -
2a
Ikeda S.Sato Y. J. Am. Chem. Soc. 1994, 116: 5975 -
2b
Ikeda S.Kondo K.Sato Y. J. Org. Chem. 1996, 61: 8248 -
2c
Ikeda S.Miyashita H.Taniguchi M.Kondo H.Okano M.Sato Y.Odashima K. J. Am. Chem. Soc. 2002, 124: 12060 -
2d
Ikeda S.Cui DM.Sato Y. J. Org. Chem. 1994, 59: 6877 -
2e
Cui DM.Tsuzuki T.Miyake K.Ikeda S.Sato Y. Tetrahedron 1998, 54: 1063 - 3
Ikeda S.Kondo K.Sato Y. Chem. Lett. 1999, 1227 - 4
Hirashita T.Kambe S.Tsuji H.Omori H.Araki S. J. Org. Chem. 2004, 69: 5054 - 5
Loh TP.Song HY.Zhou Y. Org. Lett. 2002, 4: 2715 - 6
Cui DM.Yamamoto H.Ikeda S.Hatano K.Sato Y. J. Org. Chem. 1998, 63: 2782 - 7
Ikeda S.Cui DM.Sato Y. J. Am. Chem. Soc. 1999, 121: 4712 - 8
Devasagayaraj A.Studemann T.Knochel P. Angew. Chem., Int. Ed. Engl. 1995, 34: 2723 - 9
Kimura M.Fujimatsu H.Ezoe A.Shibata K.Shimizu M.Matsumoto S.Tamaru Y. Angew. Chem. Int. Ed. 1999, 38: 397 - 10
Kimura M.Ezoe A.Tanaka S.Tamaru Y. Angew. Chem. Int. Ed. 2001, 40: 3600 -
11a
Suginome M.Matsuda T.Ito Y. Organometallics 1998, 17: 5233 -
11b
Montgomery J. Angew. Chem. Int. Ed. 2004, 43: 3890 - 12
Takimoto M.Mori M. J. Am. Chem. Soc. 2002, 124: 10008 - 13
Terao J.Matsuo S.Shibata K.Tamaru Y. Angew. Chem. Int. Ed. 1999, 38: 3386 - 14
Takimoto M.Nakamura Y.Kimura K.Mori M. J. Am. Chem. Soc. 2004, 126: 5956
References
- 1
Canoira L.Rodriguez JG. J. Heterocycl. Chem. 1985, 22: 1511 -
2a
Ikeda S.Sato Y. J. Am. Chem. Soc. 1994, 116: 5975 -
2b
Ikeda S.Kondo K.Sato Y. J. Org. Chem. 1996, 61: 8248 -
2c
Ikeda S.Miyashita H.Taniguchi M.Kondo H.Okano M.Sato Y.Odashima K. J. Am. Chem. Soc. 2002, 124: 12060 -
2d
Ikeda S.Cui DM.Sato Y. J. Org. Chem. 1994, 59: 6877 -
2e
Cui DM.Tsuzuki T.Miyake K.Ikeda S.Sato Y. Tetrahedron 1998, 54: 1063 - 3
Ikeda S.Kondo K.Sato Y. Chem. Lett. 1999, 1227 - 4
Hirashita T.Kambe S.Tsuji H.Omori H.Araki S. J. Org. Chem. 2004, 69: 5054 - 5
Loh TP.Song HY.Zhou Y. Org. Lett. 2002, 4: 2715 - 6
Cui DM.Yamamoto H.Ikeda S.Hatano K.Sato Y. J. Org. Chem. 1998, 63: 2782 - 7
Ikeda S.Cui DM.Sato Y. J. Am. Chem. Soc. 1999, 121: 4712 - 8
Devasagayaraj A.Studemann T.Knochel P. Angew. Chem., Int. Ed. Engl. 1995, 34: 2723 - 9
Kimura M.Fujimatsu H.Ezoe A.Shibata K.Shimizu M.Matsumoto S.Tamaru Y. Angew. Chem. Int. Ed. 1999, 38: 397 - 10
Kimura M.Ezoe A.Tanaka S.Tamaru Y. Angew. Chem. Int. Ed. 2001, 40: 3600 -
11a
Suginome M.Matsuda T.Ito Y. Organometallics 1998, 17: 5233 -
11b
Montgomery J. Angew. Chem. Int. Ed. 2004, 43: 3890 - 12
Takimoto M.Mori M. J. Am. Chem. Soc. 2002, 124: 10008 - 13
Terao J.Matsuo S.Shibata K.Tamaru Y. Angew. Chem. Int. Ed. 1999, 38: 3386 - 14
Takimoto M.Nakamura Y.Kimura K.Mori M. J. Am. Chem. Soc. 2004, 126: 5956