Synthesis 2005(9): 1437-1444  
DOI: 10.1055/s-2005-865330
PAPER
© Georg Thieme Verlag Stuttgart · New York

Alkoxyl Radicals as O-Synthons in Self-Terminating Radical Oxygenations: An Experimental and Theoretical Study

Duanne Sigmund, Carl H. Schiesser*, Uta Wille*
School of Chemistry, BIO21 Institute, The University of Melbourne, VIC 3010, Australia
Fax: +61(3)93478189; e-Mail: carlhs@unimelb.edu.au; e-Mail: uwille@unimelb.edu.au;
Further Information

Publication History

Received 28 February 2005
Publication Date:
21 April 2005 (online)

Abstract

Alkoxyl radicals 9 (XO), generated by photolysis of thiocarbamates 8, were found to initiate and undergo self-terminating radical oxygenations, in which alkynes are transformed into ketones. With this result, we have shown that every major class of organic O-centered radicals can act as O-atom synthon in this sequence, demonstrating the generality of this novel concept in radical chemistry. Theoretical investigations of the terminating homolytic scission of the O-X bond reveal that resonance stabilization in the cleaved radical X (e.g. benzyl, allyl) both lowers the activation barrier, ΔE , and increases the exothermicity, whereas radical stabilization by inductive effects (as in tert-butyl) only reduces ΔE , compared to non-stabilized radicals. The experimental results indicate that the final homolytic bond scission is not the only crucial step in this mechanism, but that generation of XO as well as the initial radical addition to the alkyne triple bond must be of similar importance.

    References

  • 1a Linker T. Schmittel M. Radikale und Radikalionen in der Organischen Synthese   Wiley-VCH; Weinheim: 1999. 
  • 1b Hartung J. Suárez E. Rodriguez MS. Boukouvalas J. Haynes RK. In Radicals in Organic Synthesis   Vol. 2:  Renaud P. Sibi M. Wiley-VCH; Weinheim: 2001.  Chap 5.
  • 2 Fossey J. Lefort D. Sorba J. Free Radicals in Organic Chemistry   Masson; Paris: 1995. 
  • XO = NO3 :
  • 4a Wille U. Plath C. Liebigs Ann./Recl.  1997,  111 
  • 4b Wille U. Lietzau L. Tetrahedron  1999,  55:  10119 
  • 4c Lietzau L. Wille U. Heterocycles  2001,  55:  377 
  • 4d Wille U. Chem.-Eur. J.  2002,  8:  340 
  • 4e Stademann A. Wille U. Aust. J. Chem.  2004,  57:  1055 
  • 5 XO = SO4 - : Wille U. Org. Lett.  2000,  2:  3485 
  • 6 XO = HO : Wille U. Tetrahedron Lett.  2002,  43:  1239 
  • 7 XO = RC(O)O : Wille U. J. Am. Chem. Soc.  2002,  124:  14 
  • 8 XO = ROC(O)O , ROC(O)C(O)O , R2NC(O)O , R2NO : Jargstorff C. Wille U. Eur. J. Org. Chem.  2003,  2173 
  • 9 The mechanism shown in Scheme 1 for NO3 induced self-terminating radical oxygenations was verified by DFT calculations: Dreessen T. PhD Thesis   Universität Kiel; Germany: 2004. 
  • Examples for the intermolecular addition of O-centered radicals to CºC triple bonds:
  • 10a Walling C. Clark RT. J. Am. Chem. Soc.  1974,  96:  4530 
  • 10b Walling C. El-Taliawi G. J. Am. Chem. Soc.  1973,  95:  848 
  • 10c Bottle S. Busfield WK. Jenkins ID. Skelton BW. White AH. Rizzardo E. Solomon DH. J. Chem. Soc., Perkin Trans. 2  1991,  1001 
  • 12 Kim S. Lim CJ. Song S.-E. Kang H.-Y. Synlett  2001,  688 
  • 15 Frisch MJ. Trucks GW. Schlegel HB. Scuseria GE. Robb MA. Cheeseman RR. Montgomery JA. Vreven T. Kudin KN. Burant JC. Millam JM. Iyengar SS. Tomasi J. Barone V. Mennucci B. Cossi M. Scalmani G. Rega N. Petersson GA. Nakatsuji H. Hada M. Ehara M. Toyota K. Fukuda R. Hasegawa J. Ishida M. Nakajima T. Honda Y. Kitao O. Nakai H. Klene M. Li X. Knox JE. Hratchian HP. Cross JB. Adamo C. Jaramillo J. Gomperts R. Stratmann RE. Yazyev O. Austin AJ. Cammi R. Pomelli C. Ochterski W. Ayala PY. Morokuma K. Voth GA. Salvador P. Dannenberg JJ. Zakrzewski VG. Dapprich S. Daniels AD. Strain MC. Farkas O. Malick DK. Rabuck AD. Raghavachari K. Foresman JB. Ortiz JV. Cui Q. Baboul AG. Clifford S. Cioslowski J. Stefanov BB. Liu G. Liashenko A. Piskorz P. Komaromi I. Martin RL. Fox DJ. Keith T. Al-Laham MA. Peng CY. Nanayakkara A. Challacombe M. Gill PMW. Johnson B. Chen W. Wong MW. Gonzalez C. Pople JA. Gaussian 03, Revision B.04   Gaussian, Inc.; Pittsburgh PA: 2003. 
  • Actually, the energy barrier for the addition of alkyl radicals to the carbonyl oxygen was calculated to be significantly higher than for the addition to the carbon site of a carbonyl bond:
  • 16a Hippler H. Viskolcz B. Phys. Chem. Chem. Phys.  2002,  4:  4663 
  • 16b Henry DJ. Coote ML. Gómez-Balderas R. Radom L. J. Am. Chem. Soc.  2004,  126:  1732 
  • 17 Henry DJ. Parkinson CJ. Radom L. J. Phys. Chem. A  2002,  106:  7927 ; and literature cited therein
  • 20 This is in agreement with literature, where comparison of the reaction barriers for radical reactions with these two functionals has shown the B3LYP barriers to be somewhat too low, whereas the BHandHLYP barriers are slightly too high in many cases; see for example: Wang Y. Grimme S. Zipse H. J. Phys. Chem. A  2004,  108:  2324 
3

To our knowledge, rate data for the addition of alkoxyl radicals to alkynes have not been determined so far.

11

Because of the strong transannular interactions, cycloalkyne 1 had proven to be a very suitable trial horse for studying self-terminating radical oxygenations.4-8

13

The up-scaling of photochemical reactions is normally not straight forward, because, in contrast to thermal reactions, generally a non-linear increase of both irradiation time and solvent amount is required. We have found earlier that the best way to accomplish photo-induced, self-terminating radical oxygenations on preparative scales is by accordingly increasing the amount of reaction flasks containing up to 10 mM of reactants (alkyne and radical precursor), irradiating them simultaneously and combining them for work-up.8

14

No attempt was made to separate 5 and 6. Earlier work has shown that the products are formed with a ratio of 5:6 = 3:1.4a

18

Steric repulsion by the bulky methyl substituents may be the reason for the slightly longer O-X bond in the tert-butyl substituted radical 12.

19

A comparable result was found for the reverse addition of a methyl radical to the oxygen atom in formaldehyde, calculated at the G3MP2//B3LYP/SVP level of theory.16a

21

BHandHLYP calculations performed with the cc-pVDZ, aug-cc-pVDZ and cc-pVTZ basis set, respectively, resulted in comparable results for ΔE and ΔE than obtained with the 6-311G** basis set. MP2 calculations with these basis sets generally reflected the results of the B3LYP method.