Synthesis 2005(15): 2533-2543  
DOI: 10.1055/s-2005-872075
PAPER
© Georg Thieme Verlag Stuttgart · New York

Synthesis of 24,24-Ethanovitamin D3 Lactones Using Ruthenium-Catalyzed Intermolecular Enyne Metathesis: Potent Vitamin D Receptor Antagonists

Nozomi Saitoa, Manami Masudaa, Hiroshi Saitob, Kazuya Takenouchib, Seiichi Ishizukab, Jun-ichi Namekawab, Midori Takimoto-Kamimurab, Atsushi Kittaka*a
a Faculty of Pharmaceutical Sciences, Teikyo University, Kanagawa 199-0195, Japan
Fax: +81(426)853713; e-Mail: akittaka@pharm.teikyo-u.ac.jp;
b Teijin Institute for Bio-Medical Research, Tokyo 191-8512, Japan
Further Information

Publication History

Received 25 March 2005
Publication Date:
20 July 2005 (online)

Abstract

Novel vitamin D receptor antagonists, 24,24-ethanovitamin D3-26,23-lactones 6 and 7 and their 2α-functionalized analogues 6a-c and 7a-c were synthesized and their biological activities were evaluated. The triene structure of vitamin D3 was constructed using Pd-catalyzed alkenylative cyclization of A-ring precursor enynes 12 and 12a-c with the CD-ring bromo-olefin counterpart having 24,24-ethano-α-methylene-γ-lactone on the side chain (21 or 22). The CD-ring precursors 21 and 22 were efficiently synthesized via Ru-catalyzed intermolecular enyne metathesis of 15 with ethylene to give dienone 17 followed by cyclopropanation. The VDR antagonistic activity of the newly designed vitamin D3 lactones 6 and 7 increased to 2.8 times that of TEI-9647 (2) in a HL-60 cell differentiation evaluating system. Moreover, introduction of three substituents, that is, a methyl (6a and 7a), a 3-hydroxypropyl (6b and 7b), or a 3-hydroxypropoxyl group (6c and 7c) into the C2α position of 6 and 7, resulted in marked enhancement, up to 19 times, of the antagonistic activity toward VDR.

    References

  • 1a Vitamin D   Feldman D. Glorieux FH. Pike JW. Academic Press; New York: 1997. 
  • 1b Ettinger RA. DeLuca HF. Adv. Drug Res.  1996,  28:  269 
  • 2 Bouillon R. Okamura WH. Norman AW. Endocr. Rev.  1995,  16:  200 
  • 3a Evans RM. Science  1988,  240:  889 
  • 3b Umezono K. Murakami KK. Thompson CC. Evans RM. Cell  1991,  65:  1255 
  • 4 Takeyama K. Masuhiro Y. Fuse H. Endoh H. Murayama A. Kitanaka S. Suzawa M. Yanagisawa J. Kato S. Mol. Cell Biol.  1999,  19:  1049 
  • 5a Konno K. Maki S. Fujishima T. Liu Z. Miura D. Chokki M. Takayama H. Bioorg. Med. Chem. Lett.  1998,  8:  151 
  • 5b Konno K. Fujishima T. Maki S. Liu Z. Miura D. Chokki M. Ishizuka S. Yamaguchi K. Kan Y. Kurihara M. Miyata N. Smith C. DeLuca HF. Takayama H. J. Med. Chem.  2000,  43:  4247 
  • 6a Suhara Y. Nihei K. Tanigawa H. Fujishima T. Konno K. Nakagawa K. Okano T. Takayama H. Bioorg. Med. Chem. Lett.  2000,  10:  1129 
  • 6b Suhara Y. Nihei K. Kurihara M. Kittaka A. Yamaguchi K. Fujishima T. Konno K. Miyata N. Takayama H. J. Org. Chem.  2001,  66:  8760 
  • 7a Kittaka A. Suhara Y. Takayanagi H. Fujishima T. Kurihara M. Takayama H. Org. Lett.  2000,  2:  2619 
  • 7b Saito N. Suhara Y. Kurihara M. Fujishima T. Honzawa S. Takayanagi H. Kozono T. Matsumoto M. Ohmori M. Miyata N. Takayama H. Kittaka A. J. Org. Chem.  2004,  69:  7463 
  • 8 For our account, see: Takayama H. Kittaka A. Fujishima T. Suhara Y. Vitamin D Analogs in Cancer Prevention and Therapy, Recent Results in Cancer Research   Vol. 164:  Reichrath J. Friedrich M. Tilgen W. Springer-Verlag; Berlin: 2003.  p.289 
  • This concept was also good for 1α,25-dihydroxy-19-norvitamin D3, see:
  • 9a Ono K. Yoshida A. Saito N. Fujishima T. Honzawa S. Suhara Y. Kishimoto S. Sugiura T. Waku K. Takayama H. Kittaka A. J. Org. Chem.  2003,  68:  7407 
  • 9b Yoshida A. Ono K. Suhara Y. Saito N. Takayama H. Kittaka A. Synlett  2003,  1175 
  • 10a Miura D. Manabe K. Ozono K. Saito M. Gao Q. Norman AW. Ishizuka S. J. Biol. Chem.  1999,  274:  16392 
  • 10b Ozono K. Saito M. Miura D. Michigami T. Nakajima S. Ishizuka S. J. Biol. Chem.  1999,  274:  32376 
  • 10c Miura D. Manabe K. Gao Q. Norman AW. Ishizuka S. FEBS Lett.  1999,  460:  297 
  • 10d Ishizuka S. Miura D. Eguchi H. Ozono K. Chokki M. Kamimura T. Norman AW. Arch. Biochem. Biophys.  2000,  380:  92 
  • 10e Ishizuka S. Miura D. Ozono K. Chokki M. Mimura H. Norman AW. Endocrinol.  2001,  142:  59 
  • 10f Ishizuka S. Miura D. Ozono K. Saito M. Eguchi H. Chokki M. Norman AW. Steroids  2001,  66:  227 
  • 11 For a recent report on the other type of VDR antagonist of 25-carboxylic esters ZK159222 and ZK168281, see: Väisänen S. Peräkylä M. Kärkkäinen JI. Steinmeyer A. Carlberg C. J. Mol. Biol.  2002,  315:  229 
  • 12a Ishizuka S. Ishimoto S. Norman AW. Biochemistry  1984,  23:  1473 
  • 12b Ishizuka S. Ohba T. Norman AW. Vitamin D: Molecular, Cellular and Chemical Endocrinology   Norman AW. Schaefer K. Grigoleit HG. von Herrath D. Walter de Gruyter; Berlin: 1988.  p.143 
  • 13a Carlberg C. J. Cell. Biochem.  2003,  88:  274 
  • 13b Toell A. Gonzalez MM. Ruf D. Steinmeyer A. Ishizuka S. Carlberg C. Mol. Pharmacol.  2001,  59:  1478 
  • 14a Saito N. Matsunaga T. Fujishima T. Anzai M. Saito H. Takenouchi K. Miura D. Ishizuka S. Takayama H. Kittaka A. Org. Biomol. Chem.  2003,  1:  4396 
  • 14b Saito N. Saito H. Anzai M. Yoshida A. Fujishima T. Takenouchi K. Miura D. Ishizuka S. Takayama H. Kittaka A. Org. Lett.  2003,  5:  4859 
  • 14c Saito N. Masuda M. Matsunaga T. Saito H. Anzai M. Takenouchi K. Miura D. Ishizuka S. Takimoto-Kamimura M. Kittaka A. Tetrahedron  2004,  60:  7951 
  • 15 Wiggins LS. Methods Carbohydr. Chem.  1963,  2:  181 
  • 16 Taillefumier C. Chapleur Y. Can. J. Chem.  2000,  78:  708 
  • 17 Previously, the enyne 12 was prepared through Sharpless asymmetric dihydroxylation of 3-butenyl 4-methoxyphenyl ether: Fujishima T. Konno K. Nakagawa K. Kurobe M. Okano T. Takayama H. Bioorg. Med. Chem.  2000,  8:  123 
  • 18 The original works of Ru-catalyzed intermolecular enyne metathesis, see: Kinoshita A. Sakakibara N. Mori M. J. Am. Chem. Soc.  1997,  119:  12388 
  • 19a Scholl M. Ding S. Lee CW. Grubbs RH. Org. Lett.  1999,  1:  953 
  • 19b Garber SB. Kingsbury JS. Gray BL. Hoveyda AH. J. Am. Chem. Soc.  2000,  122:  8168 
  • 19c Wakamatsu H. Blechert S. Angew. Chem. Int. Ed.  2002,  41:  2403 
  • 19d

    instability of 15 and 16d at r.t. would cause low yield of 17 and low recovery of 15.

  • 21 Trost BM. Dumas J. Villa M. J. Am. Chem. Soc.  1992,  114:  9836 
  • 22a Eisman JA. Hamstra AJ. Kream BE. DeLuca HF. Arch. Biochem. Biophys.  1976,  176:  235 
  • 22b Inaba M. DeLuca HF. Biochim. Biophys. Acta  1989,  1010:  20 
  • 23 Collins SJ. Ruscetti FW. Gallagher RE. Gallo RC. J. Exp. Med.  1979,  149:  969 
  • 24a Suhara Y. Kittaka A. Kishimoto S. Calverly MJ. Fujishima T. Saito N. Sugiura T. Waku K. Takayama H. Bioorg. Med. Chem. Lett.  2002,  12:  3255 
  • 24b Honzawa S. Yamamoto Y. Hirasaka K. Takayama H. Kittaka A. Heterocycles  2003,  61:  327 
  • 24c Honzawa S. Suhara Y. Nihei K. Saito N. Kishimoto S. Fujishima T. Kurihara M. Sugiura T. Waku K. Takayama H. Kittaka A. Bioorg. Med. Chem. Lett.  2003,  13:  3503 
  • 25 For an excellent description of the VDR-generated transactivation mechanism, see: Masuno H. Yamamoto K. Wang X. Choi M. Ooizumi H. Shinki T. Yamada S. J. Med. Chem.  2002,  45:  1825 
  • Recent reviews on the function of VDR in response to 1 and other synthetic ligands, see:
  • 26a Carlberg C. In Vitamin D Analogs in Cancer Prevention and Therapy, Recent Results in Cancer Research   Vol. 164:  Reichrath J., Friedrich M., Tilgen M., Eds., Springer; Berlin: 2003.  p.29 
  • 26b Carlberg C. J. Steroid Biochem. Mol. Biol.  2004,  89-90:  227 ; see also ref. 13
  • 27 Bula CM. Bishiop JE. Ishizuka S. Norman AW. Mol. Endocrinol.  2000,  14:  1788 
  • 28a Ochiai E. Miura D. Eguchi H. Takenouchi K. Harada Y. Azuma Y. Kamimura T. Ishizuka S. J. Bone. Miner. Res.  2003,  18 (suppl. 2):  S103 
  • 28b Ochiai E. Miura D. Eguchi H. Ohara S. Takenouchi K. Harada Y. Azuma Y. Kamimura T. Norman AW. Ishizuka S. Mol. Endocrinol.  2005,  19:  1147 
  • 29 Peräkylä M. Molnár F. Carlberg C. Chem. Biol.  2004,  11:  1147 
  • 30 Takenouchi K. Sogawa R. Manabe K. Saitoh H. Gao Q. Miura D. Ishizuka S. J. Steroid Biochem. Mol. Biol.  2004,  89-90:  31 
  • 31 It is well known that some biologically active natural products having an α-methylene-γ-lactone structure react with the thiol group of cysteine to give the corresponding cysteine adduct: Kupchan SM. Fessler DC. Eakin MA. Giacobbe TJ. Science  1970,  168:  376 
  • For recent reviews on Paget"s bone disease, see:
  • 32a Reddy SV. J. Cell Biochem.  2004,  93:  688 
  • 32b Roodman GD. Windle JJ. J. Clin. Invest.  2005,  115:  200 
  • 33 Wender PA. Sieburth S. Petraitis JJ. Singh SK. Tetrahedron  1981,  37:  1967 
20

Crystal data of 20 are as follows: C21H34BrO2, space group P212121, Z = 4, a = 7.785 (6), b = 9.445 (9), c = 27.35 (2) Å, V = 2010 (2) Å3, Dcalcd = 1.313 g/cm3, R1 = 0.063 for 16610 reflections [I > 3.00s (I)], wR2 = 0.068 [I > 3.00s (I)]; structure solution and refinement were performed using Direct Methods (SIR92) and full-matrix least-squares on F, respectively. Diffractometer Rigaku RAXIS-RAPID, graphite monochlomated CuKα (λ = 1.54187 Å).