Abstract
Enantiomerically pure allylboronic esters 1 + 2 with a stereogenic center α to the boron moiety can be obtained by a sigmatropic
rearrangement of boron containing allyl alcohols. Allyl additions with the new reagents
are highly selective, which was shown via the direct measurement of the diastereoisomeric
ratio of the intermediates 5 + 6 by characteristic NMR chemical shifts. The observations are not limited to ester
containing reagents, but holds also true for hydrocarbon side-chains (e.g. in 11 + 12) that were readily obtained by reducing the ester.
Key words
spectroscopy - allylations - boron - stereoselectivity
References
<A NAME="RC09405SS-1">1</A>
Denmark SE.
Almstead NG. In
Modern Carbonyl Chemistry
Otera J.
Wiley-VCH;
Weinheim:
2000.
p.299
<A NAME="RC09405SS-2">2</A>
Chemler SR.
Roush WR. In
Modern Carbonyl Chemistry
Otera J.
Wiley-VCH;
Weinheim:
2000.
p.403
<A NAME="RC09405SS-3">3</A>
Roush WR. In
Stereoselective Synthesis, In Methods of Organic Synthesis (Houben-Weyl)
Vol. E21:
Helmchen G.
Hoffmann RW.
Mulzer J.
Schaumann E.
Thieme Verlag;
Stuttgart:
1996.
p.1410
<A NAME="RC09405SS-4">4</A>
Hoppe D. In
Stereoselective Synthesis, In Methods of Organic Synthesis (Houben-Weyl)
Vol. E21:
Helmchen G.
Hoffmann RW.
Mulzer J.
Schaumann E.
Thieme Verlag;
Stuttgart:
1996.
p.1357
<A NAME="RC09405SS-5">5</A>
Matteson DS.
Stereodirected Synthesis with Organoboranes
Springer-Verlag;
Heidelberg:
1995.
<A NAME="RC09405SS-6">6</A>
Yamamoto Y.
Asao N.
Chem. Rev.
1993,
93:
2207
<A NAME="RC09405SS-7">7</A>
Hoffmann RW.
Weidmann U.
J. Organomet. Chem.
1980,
195:
137
<A NAME="RC09405SS-8">8</A>
Schlapbach A.
Hoffmann RW.
Eur. J. Org. Chem.
2001,
66:
323
<A NAME="RC09405SS-9">9</A>
Brown HC.
Narla G.
J. Org. Chem.
1995,
60:
4686
<A NAME="RC09405SS-10">10</A>
Lallemand J.-Y.
Six Y.
Ricard L.
Eur. J. Org. Chem.
2002,
503
<A NAME="RC09405SS-11">11</A>
Mortier J.
Vaultier M.
Plunian B.
Toupet L.
Heterocycles
1999,
50:
703
<A NAME="RC09405SS-12">12</A>
Flamme EM.
Roush WR.
J. Am. Chem. Soc.
2002,
124:
13644
<A NAME="RC09405SS-13">13</A>
Flamme EM.
Roush WR.
Org. Lett.
2005,
7:
1411
<A NAME="RC09405SS-14">14</A>
Pietruszka J.
Schöne N.
Eur. J. Org. Chem.
2004,
5011 ; and references cited therein
<A NAME="RC09405SS-15">15</A>
Pietruszka J.
Schöne N.
Angew. Chem. Int. Ed.
2003,
42:
5638 ; Angew. Chem. 2003, 115, 5796
<A NAME="RC09405SS-16">16</A>
Luithle JEA.
Pietruszka J.
J. Org. Chem.
2000,
65:
9194
<A NAME="RC09405SS-17">17</A>
Luithle JEA.
Pietruszka J.
J. Org. Chem.
1999,
64:
8287
<A NAME="RC09405SS-18">18</A>
Dale JA.
Dull DL.
Mosher HS.
J. Org. Chem.
1969,
34:
2543
<A NAME="RC09405SS-19">19</A>
König WA.
Nippe K.-S.
Mischnick P.
Tetrahedron Lett.
1990,
31:
6867
<A NAME="RC09405SS-20">20</A>
CCDC-273337 contains the supplementary crystallographic data for this paper. These
data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or
from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ,
UK; fax: +44(1223)336033; E-mail: deposit@ccdc.cam.ac.uk].
<A NAME="RC09405SS-21">21</A>
Hoffmann RW.
Landmann B.
Chem. Ber.
1986,
119:
1039
<A NAME="RC09405SS-22">22</A>
Nokami J.
Nomiyama K.
Shafi SM.
Kataoka K.
Org. Lett.
2004,
6:
1261