Abstract
1,2,4-Triazole nucleoside analogues bonded at N-1 of the base were synthesized by
addition of N -halo-3,5-dibromo-1,2,4-triazoles to 1,2-unsaturated carbohydrate derivatives (glycals).
Examples are given for 1,5-anhydro-3,4,6-tri-O -acetyl-2-deoxy-d -arabino -hex-1-enitol (tri-O -acetyl-d -glucal), and 1,5-anhydro-3,4,6-tri-O -benzyl-2-deoxy-d -arabino -hex-1-enitol (tri-O -benzyl-d -glucal), respectively. The graduated reactivity of the three halogens [C-5 (triazole)
> C-2 (sugar) > C-3 (triazole)] in the addition products allows subsequent regioselective
replacement and deprotection reactions like hydrodehalogenations, nucleophilic substitutions
(by methoxide, hydrazine, benzylamine, thiophenolate), deacetylations, and debenzylations,
respectively. Thus, the paper opens a new synthetic approach to triazole nucleoside
analogues of 2-deoxy-sugars. X-ray analyses support the structures of nine products.
Key words
nucleoside analogues - 1,2,4-triazoles - additions to d -glucals - nucleophilic substitutions - hydrodehalogenations
References
<A NAME="RT09305SS-1">1 </A>
Kröger C.-F.
Miethchen R.
Chem. Ber.
1967,
100:
2250
<A NAME="RT09305SS-2">2 </A>
Becker HGO.
Eisenschmidt V.
Bubig M.
Jähnisch K.
Klein N.
Kowalski W.
Misselwitz R.
Müller R.
Reimann P.
Roth C.
Sauter W.-D.
Schößler W.
Thorein B.
Z. Chem.
1969,
9:
325
<A NAME="RT09305SS-3">3 </A>
Unlike 3,5-dibromo-1,2,4-triazole itself, which is deprotonated and so deactivated
by sodium hydroxide, the corresponding N -alkyl derivative reacts with this reagent via 3-bromo-5-hydroxy-1-methyl-1,2,4-triazole
to the tautomeric 3-bromo-1-methyl-1,2,4-triazolone-(5). The reaction stops at this
stage, because the 3-bromo-1-methyl-1,2,4-triazolone-(5) is now likewise deactivated
by deprotonation: Miethchen, R.; Kröger, C.-F. unpublished results.
<A NAME="RT09305SS-4">4 </A>
Becker HGO,
Eisenschmidt V, and
Wehner K. inventors; Ger. Pat. DD 19670415. The data reported for nucleophilic substitutions
on 3,5-dibromo-1,2,4-triazole with alkali hydroxides and alkoxides in following patent
are not correct:
; Chem. Abstr. 1969 , 70 , 28922
<A NAME="RT09305SS-5">5 </A>
Zumbrunn A.
Synthesis
1998,
1357
<A NAME="RT09305SS-6">6 </A>
Wu Q.
Qu F.
Wan J.
Zhu X.
Xia Y.
Peng L.
Helv. Chim. Acta
2004,
87:
811
<A NAME="RT09305SS-7">7 </A>
Kovalew EG.
Postowskii IJa.
Khim. Geterotsikl. Soedin.
1968,
740
<A NAME="RT09305SS-8">8 </A>
Dallacker F.
Minn K.
Chem.-Ztg.
1986,
110:
101
<A NAME="RT09305SS-9">9 </A>
Bowles WA.
Robins RK.
J. Am. Chem. Soc.
1964,
86:
1252
<A NAME="RT09305SS-10">10 </A>
De las Heras FG.
Stud M.
Tetrahedron
1977,
33:
1513
<A NAME="RT09305SS-11">11 </A>
Herscovici J.
Montserret R.
Antonakis K.
Carbohydr. Res.
1988,
176:
219
<A NAME="RT09305SS-12">12 </A>
Winterfeld GA.
Das J.
Schmidt RR.
Eur. J. Org. Chem.
2000,
3047
<A NAME="RT09305SS-13">13 </A>
Herdewijn P.
Antisense Nucleic Acid Drug Dev.
2000,
10:
297
<A NAME="RT09305SS-14">14 </A>
Herdewijn P. In
Recent Advances in Nucleosides
Chu CK.
Elsevier;
Amsterdam:
2002.
p.239
<A NAME="RT09305SS-15">15 </A>
Eschenmoser A.
Loewenthal E.
Chem. Soc. Rev.
1992,
21:
1
<A NAME="RT09305SS-16">16 </A>
Witkowski JT.
Robins RK.
Chemistry and Biology of Nucleosides and Nucleotides
Academic Press;
New York:
1979. ; and references therein
<A NAME="RT09305SS-17">17 </A>
Kane JM.
Dudley MW.
Sorenson SM.
Miller FP.
J. Med. Chem.
1988,
31:
1253
<A NAME="RT09305SS-18">18 </A>
Hanna NB.
Dimitrijevich SD.
Larson SB.
Robins RK.
Revankar GR.
J. Heterocycl. Chem.
1988,
25:
1857
<A NAME="RT09305SS-19">19 </A>
Michael J.
Larson SB.
Vaghefi MM.
Robins K.
J. Heterocycl. Chem.
1990,
27:
1063 ; and references therein
<A NAME="RT09305SS-20">20 </A>
Thiem J.
Klaffke W.
Top. Curr. Chem.
1990,
154:
285 ; and references therein
<A NAME="RT09305SS-21">21 </A>
Collins P.
Ferrier R.
Monosaccharides, their Chemistry and their Roles in Natural Products
J. Wiley & Sons;
Chichester:
1995.
<A NAME="RT09305SS-22">22 </A>
Lafont D.
Boullanger P.
Rosenzweig M.
J. Carbohydr. Chem.
1998,
17:
1377
<A NAME="RT09305SS-23">23 </A>
The use of solvents like CHCl3 and NMP gave only low yields of the desired compounds. THF proved to be unsuitable,
because it was attacked by 1,3,5-tribromo-1,2,4-triazole (1 ) resulting in ring-opening and insertion of the 1-oxy-tetramethylene chain between
the glycosidic position and N -1 of the triazole ring. The diastereomeric O -glyco-sides (54%) were formed along with about 26% of the desired products: Christiansen,
A.; Miethchen, R. unpublished results.
<A NAME="RT09305SS-24">24 </A>
Tribromo derivative 5 , EtMgCl/[Fe(acac)3 ] in THF/NMP gave 1-(3,4,6-tri-O- acetyl-2-deoxy-α-d -mannopyranosyl)-3-bromo-1H -1,2,4-triazole along with dibromo compound 13 .
<A NAME="RT09305SS-25A">25a </A>
Kudelska W.
Czyzewska-Chlebny J.
Michalska M.
Polish J. Chem.
1994,
68:
1767
<A NAME="RT09305SS-25B">25b </A>
Rauter AP.
Figueiredo J.
Ismael M.
Canda T.
Font J.
Figueredo M.
Tetrahedron: Asymmetry
2001,
12:
1131
<A NAME="RT09305SS-26">26 </A>
Cremer D.
Pople JA.
J. Am. Chem. Soc.
1975,
97:
1354
<A NAME="RT09305SS-27">27 </A>
Crystallographic data for the structures in this paper have been deposited at the
Cambridge Crystallographic Data Centre as supplementary publication nos. CCDC 265777
(11 ), 265778 (17 ), 276274 (5 ), 276275 (6 ), 276276 (7 ), 276277 (8 ), 276278 (13 ), 276279 (14 ), and 276280 (30 ). Copies of these data can be obtained, free of charge, on application to CCDC, 12
Union Road, Cambridge CB2 1EZ, UK; fax: +44(1223)336033 or e-mail: deposit@ccdc.cam.ac.uk
or via www.ccdc.cam.ac.uk/conts/retrieving.html.