Zusammenfassung
Hintergrund: Oxidativer Stress führt zu peroxidierten Photorezeptoraußensegmenten (ROS), die mit
zunehmendem Alter nur inkomplett im RPE abgebaut und sich in der Folge im lysosomalen
System als toxisches Lipofuszin ablagern. Lysosomale Dysfunktion und Apoptose sind
zentrale Schritte bei der Pathogenese von Makuladegenerationen wie z. B. AMD. In primären
humanen RPE-Zellkulturen untersuchten wir den antioxidativen Effekt von N-Acetylcystein
(ACC) auf lysosomale Funktionen. Methoden: Primäre humane RPE-Zellkulturen wurden mit regulären oder oxidierten humanen sowie
porzinen ROS beladen und mit ACC behandelt. Das lysosomale Volumen und Akkumulation
autofluoreszenten Materials wurde mittels [14C]Methylaminakkumulation und FACS-Analyse
gemessen sowie lysosomale Komponenten mittels Proteomanalyse identifiziert. Ergebnisse: ACC reduzierte das lysosomale Gesamtvolumen der Kontrolle, mit ROS und oxidierten
ROS inkubierten RPE-Zellen. Beladung mit ROS führt zu einer verstärkten Einlagerung
autofluoreszenten Materials, welche nach Behandlung mit ACC abgeschwächt werden konnte.
Die Proteomanalyse ergab unter ACC eine generelle Herabregulierung lysosomal akkumulierender
Proteine. Schlussfolgerung: ACC ist ein wirksames Antioxidans, das ROS-abhängige Stoffwechseleinschränkungen
in der RPE-Zellkultur effektiv verbessern kann. Vorstellbar ist eine Wirkung gegen
oxidative Schäden im RPE und damit eine Prophylaxe bei Makuladegenerationen wie beispielsweise
AMD.
Abstract
Background: In the retinal pigment epithelium (RPE) lipofuscin granules accumulate with age in
the lysosomal compartment mainly as a byproduct of constant phagocytosis of oxidized
membranous discs shed from photoreceptor outer segments. Antioxidative defiency and
prooxidative conditions in the RPE play a key role in the pathogenesis of RPE dysfunction
and macular degenerations such as ARMD. In human RPE cell cultures we investigated
the antioxidative effect of N-acetylcysteine (ACC) on lysosomal functions. Methods: Primary human RPE cell cultures were loaded with regular or oxidized human and porcine
rod outer segments (ROS) and treated with ACC. Lysosomal volume and accumulation of
autofluorescent material was measured using [14C] methylamine accumulation and FACS
analysis. The regulation pattern of lysosomal proteins were investigated by proteome
analysis. Results: ACC reduced total lysosomal volume in control, ROS and oxidized ROS fed RPE cells.
After ROS incubation increased accumulation of autofluorescent material was measured.
ACC treatment decreased intracellular accumulation. Furthermore, incubation with ACC
leads to a general down regulation of lysosomal proteins. Conclusion: In our cell culture model of ROS fed RPE cells simulating aged RPE ACC improves lysosomal
volume and metabolism. Therefore ACC may represent a new prophylactic and causal treatment
option for AMD.
Schlüsselwörter
RPE - Lysosomen - Lipofuszin - N-Acetylcystein - AMD
Key words
RPE - lysosomes - lipofuscin - N-acetylcysteine - ARMD
Literatur
1
Banaclocha M M.
Therapeutic potential of N-acetylcysteine in age-related mitochondrial neurodegenerative
diseases.
Med Hypotheses.
2001;
56
472-477
2
Bergamini C M, Gambetti S, Dondi A. et al .
Oxygen, reactive oxygen species and tissue damage.
Curr Pharm Des.
2004;
10
1611-1626
3
Black P N, Morgan-Day A, McMillan T E. et al .
Randomised, controlled trial of N-acetylcysteine for treatment of acute exacerbations
of chronic obstructive pulmonary disease.
BMC Pulm Med.
2004;
6
4-13
4
Boulton M, McKechnie N M, Breda J. et al .
The formation of autofluorescent granules in cultured human RPE.
Invest Ophthalmol Vis Sci.
1989;
30
82-89
5
Cai J, Nelson K C, Wu M. et al .
Oxidative damage and protection of the RPE.
Prog Retin Eye Res.
2000;
19
205-221
6
Cajone F, Bernelli-Zazzera A.
The action of 4-hydroxynonenal on heat shock gene expression in cultured hepatoma
cells.
Free Radic Res Commun.
1989;
7
189-194
7
Ehemann V, Sykora J, Vera-Delgado J. et al .
Flow cytometric detection of spontaneous apoptosis in human breast cancer using the
TUNEL-technique.
Cancer Lett.
2003;
194
125-131
8
Esterbauer H, Schaur R J, Zollner H.
Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes.
Free Radic Biol Med.
1991;
11
81-128
9
Holz F G, Schutt F, Kopitz J. et al .
Inhibition of lysosomal degradative functions in RPE cells by a retinoid component
of lipofuscin.
Invest Ophthalmol Vis Sci.
1999;
40
737-743
10
Holz F G, Pauleikhoff D, Klein R. et al .
Pathogenesis of lesions in late age-related macular disease.
Am J Ophthalmol.
2004;
137
504-510
11
Klein R, Peto T, Bird A. et al .
The epidemiology of age-related macular degeneration.
Am J Ophthalmol.
2004;
137
486-495
12
Kopitz J, Harzer K, Kohlschutter A. et al .
Methylamine accumulation in cultured cells as a measure of the aqueous storage compartment
in the laboratory diagnosis of genetic lysosomal diseases.
Am J Med Genet.
1996;
63
198-202
13
Mantovani G, Maccio A, Madeddu C. et al .
Reactive oxygen species, antioxidant mechanisms, and serum cytokine levels in cancer
patients: impact of an antioxidant treatment.
J Environ Pathol Toxicol Oncol.
2003;
22
17-28
14
Niedernhofer L J, Daniels J S, Rouzer C A. et al .
Malondialdehyde, a product of lipid peroxidation, is mutagenic in human cells.
J Biol Chem.
2003;
278
31 426-1433
15
Romero F J, Bosch-Morell F, Romero M J. et al .
Lipid peroxidation products and antioxidants in human disease.
Environ Health Perspect.
1998;
106
1229-1234
16
Schafer F Q, Wang H P, Kelley E E. et al .
Comparing beta-carotene, vitamin E and nitric oxide as membrane antioxidants.
Biol Chem.
2002;
383
671-681
17
Schraermeyer U, Enzmann V, Kohen L. et al .
Porcine iris pigment epithelial cells can take up retinal outer segments.
Exp Eye Res.
1997;
65
277-287
18
Schraermeyer U, Heimann K.
Current understanding on the role of retinal pigment epithelium and its pigmentation.
Pigment Cell Res.
1999;
12
219-236
19
Schutt F, Davies S, Kopitz J. et al .
Photodamage to human RPE cells by A2-E, a retinoid component of lipofuscin.
Invest Ophthalmol Vis Sci.
2000;
41
2303-2308
20
Schutt F, Bergmann M, Holz F G. et al .
Isolation of intact lysosomes from human RPE cells and effects of A2-E on the integrity
of the lysosomal and other cellular membranes.
Graefes Arch Clin Exp Ophthalmol.
2002;
240
983-988
21
Schutt F, Bergmann M, Holz F G. et al .
Proteins modified by malondialdehyde, 4-hydroxynonenal, or advanced glycation end
products in lipofuscin of human retinal pigment epithelium.
Invest Ophthalmol Vis Sci.
2003;
44
3663-3668
22
Shamsi F A, Boulton M.
Inhibition of RPE lysosomal and antioxidant activity by the age pigment lipofuscin.
Invest Ophthalmol Vis Sci.
2001;
42
3041-3046
23
Singhal S S, Godley B F, Chandra A. et al .
Induction of glutathione S-transferase hGST 5.8 is an early response to oxidative
stress in RPE cells.
Invest Ophthalmol Vis Sci.
1999;
40
2652-2659
24
Spada C, Treitinger A, Reis M. et al .
The effect of N-acetylcysteine supplementation upon viral load, CD4, CD8, total lymphocyte
count and hematocrit in individuals undergoing antiretroviral treatment.
Clin Chem Lab Med.
2002;
40
452-455
25
Sternberg Jr P, Davidson P C, Jones D P. et al .
Protection of retinal pigment epithelium from oxidative injury by glutathione and
precursors.
Invest Ophthalmol Vis Sci.
1993;
34
3661-3668
26
Tepel M, Giet van der M, Statz M. et al .
The antioxidant acetylcysteine reduces cardiovascular events in patients with end-stage
renal failure: a randomized, controlled trial.
Circulation.
2003;
107
992-995
27
Terman A, Brunk U T.
Aging as a catabolic malfunction.
Int J Biochem Cell Biol.
2004;
36
2365-2375
28
Uchida K, Toyokuni S, Nishikawa K. et al .
Michael addition-type 4-hydroxy-2-nonenal adducts in modified low-density lipoproteins:
markers for atherosclerosis.
Biochemistry.
1994;
33
12 487-12 494
29
Valko M, Morris H, Cronon M T.
Metals, toxicity and oxidative stress.
Curr Med Chem.
2005;
12
1161-1208
30
Zhang Z, Butler J D, Levin S W. et al .
Lysosomal ceroid depletion by drugs: therapeutic implications for a hereditary neurodegenerative
disease of childhood.
Nat Med.
2001;
7
478-484
Priv.-Doz. Dr. Florian Schütt
Universitätsaugenklinik Heidelberg
INF 400
69120 Heidelberg
Phone: ++49/62 21/56 69 99
Fax: ++49/62 21/56 54 22
Email: florian_schuett@med.uni-heidelberg.de