Synthesis 2023; 55(10): 1543-1552
DOI: 10.1055/a-2017-6065
paper

Transition-Metal-Free Dehydrogenative Cyclization via α-Csp3–H Activation of Ethers and Thioethers

Kartic Manna
a   Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India
b   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Uttar Pradesh, India
,
Hasina Mamataj Begam
a   Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India
,
Ranjan Jana
a   Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India
b   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Uttar Pradesh, India
› Author Affiliations
This research was funded by the Science and Engineering Research Board (SERB, DST, India; Core Research Grant No. CRG/2021/006717). KM and HMB thank the Council of Scientific and Industrial Research, India (CSIR) for their fellowships.


Abstract

We report herein the tetraethylammonium bromide catalyzed intramolecular oxidative cyclization of O- or S-alkylated salicylic or thiosalicylic acid derivatives to access 4H-benzo[d][1,3]dioxin-4-ones or 4H-benzo[d][1,3]oxathiin-4-ones, respectively. The oxidative cyclization of salicylic acid derivatives proceeds through a radical pathway at 110 °C. In contrast, the cyclization of the thiosalicylic acids proceeds smoothly at room temperature via an ionic pathway. Notably, the overall reactions are fast, completed within short reaction times, furnishing the products in high yields and with smooth formation of quaternary carbon centers.

Supporting Information



Publication History

Received: 02 November 2022

Accepted after revision: 23 January 2023

Accepted Manuscript online:
23 January 2023

Article published online:
27 February 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Liu B, Romine AM, Rubel CZ, Engle KM, Shi B.-F. Chem. Rev. 2021; 121: 14957
    • 1b He J, Wasa M, Chan KS. L, Shao Q, Yu J.-Q. Chem. Rev. 2017; 117: 8754
    • 2a Aihara Y, Chatani N. J. Am. Chem. Soc. 2014; 136: 898
    • 2b Wasa M, Chan KS. L, Zhang X.-G, He J, Miura M, Yu J.-Q. J. Am. Chem. Soc. 2012; 134: 18570
    • 3a Buss JA, Vasilopoulos A, Golden DL, Stahl SS. Org. Lett. 2020; 22: 5749
    • 3b Macías-Benítez P, Moreno-Dorado FJ, Guerra FM. J. Org. Chem. 2020; 85: 6027
    • 3c Wang R, Luan Y, Ye M. Chin. J. Chem. 2019; 37: 720
    • 3d Tanwar L, Börgel J, Ritter T. J. Am. Chem. Soc. 2019; 141: 17983
  • 5 Shi L, Xia W. Chem. Soc. Rev. 2012; 41: 7687
  • 6 Saito H, Oishi H, Kitagaki S, Nakamura S, Anada M, Hashimoto S. Org. Lett. 2002; 4: 3887
  • 7 McQuaid KM, Long JZ, Sames D. Org. Lett. 2009; 11: 2972
  • 8 Bower JF, Skucas E, Patman RL, Krische MJ. J. Am. Chem. Soc. 2007; 129: 15134
    • 9a Wan T, Capaldo L, Laudadio G, Nyuchev AV, Rincón JA, García-Losada P, Mateos C, Frederick MO, Nuño M, Noël T. Angew. Chem. Int. Ed. 2021; 60: 17893
    • 9b Zhang S.-Y, Zhang F.-M, Tu Y.-Q. Chem. Soc. Rev. 2011; 40: 1937
    • 10a Liu D, Liu C, Li H, Lei A. Angew. Chem. Int. Ed. 2013; 52: 4453
    • 10b Liu Z.-Q, Sun L, Wang J.-G, Han J, Zhao Y.-K, Zhou B. Org. Lett. 2009; 11: 1437
    • 11a Akhter M, Husain A, Akhter N, Khan MS. Y. Indian J. Pharm. Sci. 2011; 73: 101
    • 11b Soltani O, De Brabander JK. Angew. Chem. Int. Ed. 2005; 44: 1696
    • 12a Lin F, Song Q, Gao Y, Cui X. RSC Adv. 2014; 4: 19856
    • 12b Yoshino T, Sato I, Hirama M. Org. Lett. 2012; 14: 4290
  • 13 Carrillo-Arcos UA, Rojas-Ocampo J, Porcel S. Dalton Trans. 2016; 45: 479
  • 14 Manna K, Begam HM, Samanta K, Jana R. Org. Lett. 2020; 22: 7443
  • 15 Zhu X, Shi Y, Mao H, Cheng Y, Zhu C. Adv. Synth. Catal. 2013; 355: 3558
    • 16a Yang K, Li Y, Song M, Dai S, Li Z.-Y, Sun X. Chin. Chem. Lett. 2021; 32: 146
    • 16b Bur SK, Padwa A. Chem. Rev. 2004; 104: 2401
    • 17a Xue Q, Xie J, Xu P, Hu K, Cheng Y, Zhu C. ACS Catal. 2013; 3: 1365
    • 17b Xie J, Jiang H, Cheng Y, Zhu C. Chem. Commun. 2012; 48: 979
  • 18 Mandal S, Bera T, Dubey G, Saha J, Laha JK. ACS Catal. 2018; 8: 5085
  • 19 Arroniz C, Denis JG, Ironmonger A, Rassias G, Larrosa I. Chem. Sci. 2014; 5: 3509
  • 20 Bhalerao DS, Mahajan US, Akamanchi KG. Synth. Commun. 2008; 38: 2814
  • 21 Kaiser D, Klose I, Oost R, Neuhaus J, Maulide N. Chem. Rev. 2019; 119: 8701
  • 22 Senatore R, Malik M, Spreitzer M, Holzer W, Pace V. Org. Lett. 2020; 22: 1345
  • 23 Deshpande MS, Wei J, Luo G, Cianci C, Danetz S, Torri A, Tiley L, Krystal M, Yu K.-L, Huang S, Gao Q, Meanwell NA. Bioorg. Med. Chem. Lett. 2001; 11: 2393
  • 24 Farat OK, Kovtun AV, Varenichenko SA, Mazepa AV, Markov VI. Monatsh. Chem. 2021; 152: 95
  • 25 Liu Y, Huang M, Wei L. New J. Chem. 2017; 41: 4776
  • 26 Ooguri A, Nakai K, Kurahashi T, Matsubara S. J. Am. Chem. Soc. 2009; 131: 13194
  • 27 Yang K, Niu B, Ma Z, Wang H, Lawrence B, Ge H. J. Org. Chem. 2019; 84: 14045
  • 28 Ito S, Kubota Y, Asami M. Chem. Lett. 2015; 45: 16