Synlett 2024; 35(01): 21-28
DOI: 10.1055/a-2071-4549
account
Functional Dyes

Near-Infrared Hemicyanine Fluorophores with Optically Tunable Groups: A ‘Leap Forward’ for in Vivo Sensing and Imaging

Jing Huang
a   State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. of China
,
Long He
a   State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. of China
,
Jiaoliang Wang
b   College of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, Hunan, P. R. of China
,
Junchao Xu
a   State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. of China
,
Lin Yuan
a   State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. of China
› Author Affiliations
We would like to thank the Natural Science Foundation of Hunan Province (2021JJ30073) (J.W.), and the National Natural Science Foundation of China (NSFC) (22074036) (L.Y.).


Abstract

Hemicyanine dyes, with a tunable optical site and high wavelength tailorability, are of significant importance in the fields of sensing and diagnosis. Following the discovery of the near-infrared (NIR) (650–900 nm) fluorescent dyes Changsha (CS) and Huda (HD) by our group, remarkable progress has been made in the development of hemicyanine-based probes for in vivo imaging and detecting. In this review, we summarize the key contributions made by our group in developing long-wavelength (650–1700 nm) hemicyanines and utilizing them to construct functional probes. Finally, potential drawbacks and future prospects of hemicyanine dyes/probes are discussed.

1 Introduction

2 Changsha (CS) Dyes

3 Huda (HD) Dyes

4 Construction of Hemicyanine Fluorophores in the NIR-II Region

5 Summary and Outlook



Publication History

Received: 13 March 2023

Accepted after revision: 11 April 2023

Accepted Manuscript online:
11 April 2023

Article published online:
01 June 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Chen L, Lyu Y, Zhang X, Zheng L, Li Q, Ding D, Chen F, Liu Y, Li W, Zhang Y, Huang Q, Wang Z, Xie T, Zhang Q, Sima Y, Li K, Xu S, Ren T, Xiong M, Wu Y, Song J, Yuan L, Yang H, Zhang XB, Tan W. Sci. China Chem. 2023; 66: 1336
    • 1b Sedgwick AC, Wu LL, Han HH, Bull SD, He XP, James TD, Sessler JL, Tang BZ, Tian H, Yoon J. Chem. Soc. Rev. 2018; 47: 8842
    • 1c Wu XF, Li XH, Li HY, Shi W, Ma HM. Chem. Commun. 2017; 53: 2443
    • 1d Yang XG, Zhou YB, Zhang XF, Yang S, Chen Y, Guo JR, Li XX, Qing ZH, Yang RH. Chem. Commun. 2016; 52: 10289
    • 1e Mao ZQ, Ye MT, Hu W, Ye XX, Wang YY, Zhang HJ, Li CY, Liu ZH. Chem. Sci. 2018; 9: 6035
    • 1f Jiang G, Lou X.-F, Zuo S, Liu X, Ren T.-B, Wang L, Zhang XB, Yuan L. Angew. Chem. Int. Ed. 2023; 62: e202218613
    • 1g Xu S, Pan W, Ren T.-B, Huan SY, Yuan L, Zhang XB. Chin. J. Chem. 2022; 40: 1073
    • 2a Zhang Q, Zhu Z, Zheng Y, Cheng J, Zhang N, Long Y.-T, Zheng J, Qian X, Yang Y. J. Am. Chem. Soc. 2012; 134: 18479
    • 2b Huang S.-T, Teng C.-J, Lee Y.-H, Wu J.-Y, Wang K.-L, Lin C.-M. Anal. Chem. 2010; 82: 7329
    • 2c Cao DX, Liu ZQ, Verwilst P, Koo S, Jangjili P, Kim JS, Lin WY. Chem. Rev. 2019; 119: 10403
    • 3a Doura T, Kamiya M, Obata F, Yamaguchi Y, Hiyama TY, Matsuda T, Fukamizu A, Noda M, Miura M, Urano Y. Angew. Chem. Int. Ed. 2016; 55: 9620
    • 3b Li K, Li LL, Zhou Q, Yu KK, Kim JS, Yu XQ. Coord. Chem. Rev. 2019; 388: 310
    • 3c Wu YL, Huang SL, Zeng F, Wang J, Yu CM, Huang J, Xie HT, Wu SZ. Chem. Commun. 2015; 51: 12791
    • 4a Duan QX, Jia P, Zhuang ZH, Liu CY, Zhang X, Wang ZK, Sheng WL, Li ZL, Zhu HC, Zhu BC, Zhang XL. Anal. Chem. 2019; 91: 2163
    • 4b Zhang Z, Fan JL, Zhao YH, Kang Y, Du JJ, Peng XJ. ACS Sens. 2018; 3: 735
    • 4c Li L, Feng L, Zhang M, He X, Luan S, Wang C, James TD, Zhang H, Huang H, Ma X. Chem. Commun. 2020; 56: 4640
  • 5 Yuan L, Lin W, Zhao S, Gao W, Chen B, He L, Zhu S. J. Am. Chem. Soc. 2012; 134: 13510
  • 6 Li J, Dong Y, Wei R, Jiang G, Yao C, Lv M, Wu Y, Gardner SH, Zhang F, Lucero MY, Huang J, Chen H, Ge G, Chan J, Chen J, Sun H, Luo X, Qian X, Yang Y. J. Am. Chem. Soc. 2022; 144: 14351
    • 7a Qian M, Zhang L, Pu Z, Xia J, Chen L, Xia Y, Cui H, Wang J, Peng X. J. Mater. Chem. B 2018; 6: 7916
    • 7b Li B, Zhao M, Feng L, Dou C, Ding S, Zhou G, Lu L, Zhang H, Chen F, Li X, Li G, Zhao S, Jiang C, Wang Y, Zhao D, Cheng Y, Zhang F. Nat. Commun. 2020; 11: 3102
    • 7c Liu J, Ma X, Cui C, Chen Z, Wang Y, Deenik PR, Cui L. J. Med. Chem. 2021; 64: 17969
    • 7d Wang F, Qu L, Ren F, Baghdasaryan A, Jiang Y, Hsu R, Liang P, Li J, Zhu G, Ma Z, Dai H. Proc. Natl. Acad. Sci. U. S. A. 2022; 119: e2123111119
    • 7e Tu L, Li C, Xiong X, Kim JH, Li Q, Mei L, Li J, Liu S, Kim JS, Sun Y. Angew. Chem. Int. Ed. 2023; 62: e202301560
    • 7f Xu Y, Li C, An J, Ma X, Yang J, Luo L, Deng Y, Kim JS, Sun Y. Sci. China Chem. 2022; 66: 155
    • 8a Sun W, Guo S, Hu C, Fan J, Peng X. Chem. Rev. 2016; 116: 7768
    • 8b Zhou HJ, Ren TB. Chem. Asian J. 2022; 17: e202200147
    • 8c Braun AB, Wehl I, Kolmel DK, Schepers U, Brase S. Chem. Eur. J. 2019; 25: 7998
    • 9a Sasaki E, Kojima H, Nishimatsu H, Urano Y, Kikuchi K, Hirata Y, Nagano T. J. Am. Chem. Soc. 2005; 127: 3684
    • 9b Yu F, Li P, Li G, Zhao G, Chu T, Han K. J. Am. Chem. Soc. 2011; 133: 11030
    • 9c Xu K, Qiang M, Gao W, Su R, Li N, Gao Y, Xie Y, Kong F, Tang B. Chem. Sci. 2013; 4: 1079
    • 9d Li H, Kim H, Xu F, Han J, Yao Q, Wang J, Pu K, Peng X, Yoon J. Chem. Soc. Rev. 2022; 51: 1795
    • 10a Wang Z, Cong TD, Zhong W, Lau JW, Kwek G, Chan-Park MB, Xing B. Angew. Chem. Int. Ed. 2021; 60: 16900
    • 10b Jia X, Chen Q, Yang Y, Tang Y, Wang R, Xu Y, Zhu W, Qian X. J. Am. Chem. Soc. 2016; 138: 10778
    • 10c Oushiki D, Kojima H, Terai T, Arita M, Hanaoka K, Urano Y, Nagano T. J. Am. Chem. Soc. 2010; 132: 2795
    • 11a Shi Y, Wang R, Yuan W, Liu Q, Shi M, Feng W, Wu Z, Hu K, Li F. ACS Appl. Mater. Interfaces 2018; 10: 20377
    • 11b Samanta A, Vendrell M, Das R, Chang YT. Chem. Commun. 2010; 46: 7406
  • 12 Zeng Z, Liew SS, Wei X, Pu KY. Angew. Chem. Int. Ed. 2021; 60: 26454
  • 13 Karton-Lifshin N, Segal E, Omer L, Portnoy M, Satchi-Fainaro R, Shabat D. J. Am. Chem. Soc. 2011; 133: 10960
  • 14 Yuan L, Lin WY, Yang YT, Chen H. J. Am. Chem. Soc. 2012; 134: 1200
  • 15 Liu X, Gong X, Yuan J, Fan X, Zhang X, Ren T, Yang S, Yang R, Yuan L, Zhang X.-B. Anal. Chem. 2021; 93: 5420
    • 16a Xie J.-Y, Li C.-Y, Li Y.-F, Fei J, Xu F, Ou-Yang J, Liu J. Anal. Chem. 2016; 88: 9746
    • 16b Yao S.-k, Qian Y, Qi Z.-q, Lu C.-g, Cui Y.-p. New J. Chem. 2017; 41: 13495
    • 16c Song X, Bian H, Wang C, Hu M, Li N, Xiao Y. Org. Biomol. Chem. 2017; 15: 8091
    • 17a Beija M, Afonso CA. M, Martinho JM. G. Chem. Soc. Rev. 2009; 38: 2410
    • 17b Li X, Gao X, Shi W, Ma H. Chem. Rev. 2014; 114: 590
  • 18 Wei Y, Cheng D, Ren T, Li Y, Zeng Z, Yuan L. Anal. Chem. 2016; 88: 1842
  • 19 Lv Y, Cheng D, Su D, Chen M, Yin B, Yuan L, Zhang X. Chem. Sci. 2018; 9: 7606
  • 20 Wu Q, Zhou Q.-H, Li W, Ren T.-B, Zhang X.-B, Yuan L. ACS Sens. 2022; 7: 3829
  • 21 Li W, Shen Y, Gong X, Zhang X.-B, Yuan L. Anal. Chem. 2021; 93: 16673
  • 22 Lee WI, Shrivastava S, Duy LT, Kim BY, Son YM, Lee NE. Biosens. Bioelectron. 2017; 94: 643
  • 23 Cheng D, Peng JJ, Lv Y, Su DD, Liu DJ, Chen M, Yuan L, Zhang XB. J. Am. Chem. Soc. 2019; 141: 6352
    • 24a Liu Q, Yuan J, Jiang R, He L, Yang X, Yuan L, Cheng D. Anal. Chem. 2023; 95: 2062
    • 24b Fan X, Ren T, Yang W, Zhang X, Yuan L. Chem. Commun. 2021; 57: 8644
  • 25 Yuan J, Zhou QH, Xu S, Zuo QP, Li W, Zhang XX, Ren TB, Yuan L, Zhang XB. Angew. Chem. Int. Ed. 2022; 61: e202206169
    • 26a Li X, Li X, Ma H. Chem. Sci. 2020; 11: 1617
    • 26b Santra M, Owens M, Birch G, Bradley M. ACS Appl. Bio Mater. 2021; 4: 8503
    • 26c Liu Y, Teng L, Lou X.-F, Zhang X.-B, Song G. J. Am. Chem. Soc. 2023; 145: 5134
    • 27a Xu L, He X, Huang Y, Ma P, Jiang Y, Liu X, Tao S, Sun Y, Song D, Wang X. J. Mater. Chem. B 2019; 7: 1284
    • 27b Gardner SH, Brady CJ, Keeton C, Yadav AK, Mallojjala SC, Lucero MY, Su S, Yu Z, Hirschi JS, Mirica LM, Chan J. Angew. Chem. Int. Ed. 2021; 60: 18860
    • 27c Zuo S, Jiang G, Zheng Y, Zhang X, Qin Z, Chen L, Ren T, Zhang X.-B, Yuan L. Anal. Chem. 2023; 95: 898
  • 28 Chen H, Dong B, Tang Y, Lin W. Chem. Eur. J. 2015; 21: 11696
  • 29 Fan X.-P, Huang J, Ren T.-B, Yuan L, Zhang X.-B. Anal. Chem. 2023; 95: 1566
  • 30 Yao S, Chen Y, Ding W, Xu F, Liu Z, Li Y, Wu Y, Li S, He W, Guo Z. Chem. Sci. 2023; 14: 1234
  • 31 Richard JA. Org. Biomol. Chem. 2015; 13: 8169
  • 32 Ren TB, Wang ZY, Xiang Z, Lu P, Lai HH, Yuan L, Zhang XB, Tan W. Angew. Chem. Int. Ed. 2021; 60: 800
  • 33 Lei Z, Zhang F. Angew. Chem. Int. Ed. 2021; 60: 16294
  • 34 Cosco ED, Caram JR, Bruns OT, Franke D, Day RA, Farr EP, Bawendi MG, Sletten EM. Angew. Chem. Int. Ed. 2017; 56: 13126
  • 35 Qin Z, Ren TB, Zhou H, Zhang X, He L, Li Z, Zhang XB, Yuan L. Angew. Chem. Int. Ed. 2022; 61: e202201541
  • 36 Zhang F, Zhang X, Chen Y, He H, Wang S, Lei Z. Angew. Chem. Int. Ed. 2021; 60: 26337
  • 37 He L, He LH, Xu S, Ren TB, Zhang XX, Qin ZJ, Zhang XB, Yuan L. Angew. Chem. Int. Ed. 2022; 61: e202211409
  • 38 East AK, Lee MC, Smaga LP, Jiang C, Mallojjala SC, Hirschi JS, Chan J. Org. Lett. 2022; 24: 8509
  • 39 Miao J, Miao M, Jiang Y, Zhao M, Li Q, Zhang Y, An Y, Pu K, Miao Q. Angew. Chem. Int. Ed. 2023; 62: e202216351