Synlett 2023; 34(17): 2022-2028
DOI: 10.1055/a-2107-5567
letter
Special Issue Thieme Chemistry Journals Awardees 2023

Catalyst-Free, Multicomponent Reaction of Iodonium Ylides, Nitrosoarenes, and Olefins for the Synthesis of Isoxazolidine Derivatives

Yan-Rui Zhao
a   Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, P. R. of China
,
Lei Li
b   Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, P. R. of China
,
Jun Xuan
a   Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, P. R. of China
› Author Affiliations
Financial support for this work was provided by the National Natural Science Foundation of China (nos. 21971001, 22101002, and 21702001).


Abstract

A general and efficient three-component protocol for the synthesis of isoxazolidines has been developed. A range of nitrosoarenes, olefins, as well as iodonium ylides can be subjected to this reaction to generate the N-aryl isoxazolidines derivatives with moderate to excellent yields. In addition, we demonstrate that this approach employs the 1,3-dipolar cycloaddition of nitrones generated in situ from iodonium ylides and nitroso compounds, with olefins in the absence of any catalysts and additives.

Supporting Information



Publication History

Received: 04 May 2023

Accepted after revision: 07 June 2023

Accepted Manuscript online:
07 June 2023

Article published online:
13 July 2023

© 2023 . Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Wessjohann LA, Rivera DG, Vercillo OE. Chem. Rev. 2009; 109: 796
    • 1b Perreault S, Rovis T. Chem. Soc. Rev. 2009; 38: 3149
    • 1c Volla CM. R, Atodiresei I, Rueping M. Chem. Rev. 2013; 114: 2390
    • 1d Zhu J, Wang Q, Wang M. Eds. Multicomponent Reactions in Organic Synthesis . Wiley-VCH; Weinheim, Germany: 2014
    • 2a Muller P. Acc. Chem. Res. 2004; 37: 243
    • 2b Zhdankin VV. Eds. Hypervalent Iodine Chemistry: Preparation, Structure and Synthetic Applications of Polyvalent Iodine Compounds. John Wiley & Sons; Chichester, UK: 2013
    • 2c Tong M.-H, Zhang X.-Y, Wang Y.-M, Wang Z.-K. Chin. J. Org. Chem. 2021; 41: 126
    • 2d Xia M, Chao P, Feng W.-S, Cui X.-L. Org. Chem. Front. 2022; 9: 6999
    • 3a Hackenberg J, Hanack M. J. Chem. Soc., Chem. Commun. 1991; 470
    • 3b Yang R.-Y, Dai L.-X, Chen C.-G. J. Chem. Soc., Chem. Commun. 1992; 1487
    • 3c Ochiai M, Okada T, Tada N, Yoshimura A. Org. Lett. 2008; 10: 1425
    • 3d Vaitla J, Hopmann KH, Bayer A. Org. Lett. 2017; 19: 6688
    • 4a Goudreau SR, Marcoux D, Charette AB. J. Org. Chem. 2009; 74: 470
    • 4b Zhu C.-J, Yoshimura A, Ji L, Wei Y.-Y, Nemykin VN, Zhdankin VV. Org. Lett. 2012; 14: 3170
    • 4c Deng C, Wang L.-J, Zhu J, Tang Y. Angew. Chem. Int. Ed. 2012; 51: 11620 ; Angew. Chem. 2012, 124, 11788
    • 4d Guo J, Liu Y.-B, Li X.-Q, Liu X.-H, Lin L.-L, Feng X.-M. Chem. Sci. 2016; 7: 2717
    • 4e Zhao Z.-G, Luo Y.-R, Liu S.-Y, Zhang L, Feng L, Wang Y. Angew. Chem. Int. Ed. 2018; 57: 3792 ; Angew. Chem. 2018, 130, 3854
    • 4f Yang Z.-K, Liu J.-D, Li Y.-T, Ding J.-W, Zheng L.-Y, Liu Z.-Q. J. Org. Chem. 2022; 87: 14809
    • 5a Matveeva ED, Podrugina TA, Taranova MA, Ivanova AM, Gleiter R, Zefirov NS. J. Org. Chem. 2012; 77: 5770
    • 5b Matveeva ED, Podrugina TA, Taranova MA, Vinogradov DS, Gleiter R, Zefirov NS. J. Org. Chem. 2013; 78: 11691
    • 6a Vaid R.-K, Hopkins T.-E. Tetrahedron Lett. 1997; 38: 6981
    • 6b Batsila C, Gogonas EP, Kostakis G, Hadjiarapoglou LP. Org. Lett. 2003; 5: 1511
    • 6c Müller P. Chem. Res. 2004; 37: 243
  • 7 Hartmann M, Li Y, Mìck-Lichtenfeld C, Studer A. Chem. Eur. J. 2016; 22: 3485
    • 8a Zhang L, Kong X.-J, Liu S.-Y, Zhao Z.-G, Yu Q, Wang W, Wang Y. Org. Lett. 2019; 21: 2923
    • 8b Zhang L, Zhao Z.-G, Wang W, Liu S.-Y, Wang Y. Org. Lett. 2019; 21: 9171
  • 9 Sen S, Barman D, Khan H, Das R, Maiti D. J. Org. Chem. 2022; 87: 12164
    • 10a Zhao B.-X, Wang Y, Zhang D.-M, Jiang R.-W, Wang G.-C, Shi J.-M, Huang X.-J, Chen W.-M, Che C.-T, Ye W.-C. Org. Lett. 2011; 13: 3888
    • 10b Rescifina A, Chiacchio U, Corsaro A, Piperno A, Romeo RR. Eur. J. Med. Chem. 2011; 46: 129
    • 10c Ma N, Yao Y, Zhao B.-X, Wang Y, Ye W.-C, Jiang S. Chem. Commun. 2014; 50: 9284
    • 10d Berthet M, Cheviet T, Dujardin G, Parrot I, Martinez J. Chem. Rev. 2016; 116: 15235
    • 11a Gioia C, Fini F, Mazzanti A, Bernardi L, Ricci A. J. Am. Chem. Soc. 2009; 131: 9614
    • 11b LaLonde RL, Wang Z.-J, Mba M, Lackner AD, Toste FD. Angew. Chem. Int. Ed. 2010; 49: 598
    • 11c Partridge KM, Guzei IA, Yoon TP. Angew. Chem. Int. Ed. 2010; 49: 930
    • 11d Romeo G, Chiacchio U, Corsaro A, Merino P. Chem. Rev. 2010; 110: 3337
    • 11e Kobayashi Y, Taniguchi Y, Hayama N, Inokuma T, Takemoto YA. Angew. Chem. Int. Ed. 2013; 52: 11114
    • 11f Morita N, Kono R, Fukui K, Miyazawa A, Masu H, Azumaya I, Ban S, Hashimoto Y, Okamoto I, Tamura O. J. Org. Chem. 2015; 80: 4797
    • 11g Klier L, Tur F, Poulsen PH, Jørgensen KA. Chem. Soc. Rev. 2017; 46: 1080
    • 12a Brandi A, Cicchi S, Cordero FM, Goti A. Chem. Rev. 2003; 103: 1213
    • 12b Stanley LM, Sibi MP. Chem. Rev. 2008; 108: 2887
    • 12c Gothelf KV, Jørgensen KA. Chem. Rev. 1998; 98: 863
    • 12d Appukkuttan P, Mehta VP, Van der Eycken EV. Chem. Soc. Rev. 2010; 39: 1467
    • 12e Wang X, Weigl C, Doyle MP. J. Am. Chem. Soc. 2011; 133: 9572
    • 12f Yang X, Cheng F, Kou YD, Pang S, Shen YC, Huang YY, Shibata N. Angew. Chem. Int. Ed. 2017; 56: 1510
    • 13a Xie J, Xue Q.-C, Jin H.-M, Li H.-M, Cheng Y.-X, Zhu C.-J. Chem. Sci. 2013; 4: 1281
    • 13b Chatterjee I, Fröhlich R, Studer A. Angew. Chem. Int. Ed. 2011; 50: 11257
    • 13c Chakrabarty S, Chatterjee I, Wibbeling B, Daniliuc CG, Studer A. Angew. Chem. Int. Ed. 2014; 53: 5964
    • 13d Barber JS, Styduhar ED, Pham HV, McMahon TC, Houk KN, Garg NK. J. Am. Chem. Soc. 2016; 138: 2512
    • 13e Yao T.-L, Ren B.-G, Wang B, Zhao Y.-N. Org. Lett. 2017; 19: 3135
    • 13f Sugita S, Takeda N, Tohnai N, Miyata M, Miyata O, Ueda M. Angew. Chem. Int. Ed. 2017; 56: 2469
    • 13g Ramakrishna I, Ramaraju P, Baidya M. Org. Lett. 2018; 20: 1023
    • 13h Yang H, Wei G, Jiang Z.-Y. ACS Catal. 2019; 9: 9599
    • 14a Chen H, Wang Z.-F, Zhang Y.-N, Huang Y. J. Org. Chem. 2013; 78: 3503
    • 14b Sharma P, Jadhav PD, Skaria M, Liu R.-S. Org. Biomol. Chem. 2017; 15: 9389
    • 14c Kawade RK, Liu R.-S. Angew. Chem. Int. Ed. 2017; 56: 2035
  • 15 Zhai P.-G, Li W.-H, Lin J.-Y, Li X, Wei W.-L, Chen W.-W. J. Org. Chem. 2021; 86: 17710
    • 16a Xu Z.-J, Zhu D, Zeng X, Wang F, Tan B, Hou Y.-X, Lv Y.-B, Zhong G.-F. Chem. Commun. 2010; 46: 2504
    • 16b Reddy AR, Guo Z, Siu FM, Lok CN, Liu F, Yeung KC, Zhou C.-Y, Che C.-M. Org. Biomol. Chem. 2012; 10: 9165
    • 16c Molander GA, Cavalcanti LN. Org. Lett. 2013; 15: 3166
    • 16d Pagar VV, Liu R.-S. Angew. Chem. Int. Ed. 2015; 54: 4923
    • 16e Wu M.-Y, He W.-W, Liu X.-Y, Tan B. Angew. Chem. Int. Ed. 2015; 54: 9409
    • 16f Gupta E, Nair SR, Kant R, Mohanan K. J. Org. Chem. 2018; 83: 14811
    • 16g Li X, Feng T, Li D.-J, Chang H.-L, Gao W.-C, Wei W.-L. J. Org. Chem. 2019; 84: 4402
  • 17 Li X, Zhai P.-G, Fang Y.-S, Li W.-H, Chang H.-H, Gao W.-C. Org. Chem. Front. 2021; 8: 988
  • 18 Li X, Zheng L.-J, Gong X.-L, Chang H.-H, Gao W.-C, Wei W.-L. J. Org. Chem. 2021; 86: 1096
    • 19a Cai B.-G, Luo S.-S, Li L, Li L, Xuan J, Xiao W.-J. CCS Chem. 2020; 2: 2764
    • 19b Cheng X, Cai B.-G, Mao H, Lu J, Li L, Wang K, Xuan J. Org. Lett. 2021; 23: 4109
    • 19c Zhou S.-J, Cai B.-G, Hu C.-X, Cheng X, Li L, Xuan J. Chin. Chem. Lett. 2021; 32: 2577
    • 19d Cai B.-G, Li Q, Empel C, Li L, Koenigs RM, Xuan J. ACS Catal. 2022; 12: 11129
    • 19e Chen Z.-L, Chen J.-R, Xuan J. Chin. Chem. Lett. 2022; 33: 2763
    • 19f Cai B.-G, Xu G.-Y, Xuan J. Chin. Chem. Lett. 2023; 16: 108335
  • 20 Zhao Y.-R, Li L, Xu G.-Y, Xuan J. Adv. Synth. Catal. 2022; 364: 506
    • 21a Tahtaoui C, Parrot I, Guillier P, Galzi JL, Hibert M, Ilien B. J. Med. Chem. 2004; 47: 4300
    • 21b Li L, Zhang J. Org. Lett. 2011; 13: 5940
    • 21c Aïssa C, Ho KY. T, Tetlow DJ, Pin-Nó M, Klotz F. Angew. Chem. Int. Ed. 2014; 53: 4209
    • 21d Manel A, Berreur J, Leroux FR, Panossian A. Org. Chem. Front. 2021; 8: 5289
    • 21e Tanaka S, Iwase S, Kanda S, Kato M, Kiriyama Y, Kitamura M. Synthesis 2021; 53: 3121
    • 21f Lepore SD, Schacht AL, Wiley MR. Tetrahedron Lett. 2002; 43: 8777
  • 22 General Procedure To a sealed tube equipped with a magnetic stir bar were added 1a′ (0.20 mmol, 2.0 equiv), 2a (0.10 mmol, 10.7 mg, 1.0 equiv), 3a (0.20 mmol, 20.8 mg, 2.0 equiv), and dry DCM (1.0 mL). Then, the temperature of metal sand bath was set to 50 ℃, and the closed reaction system was stirred for 18 h. The solvent was removed by vacuum, and the crude product was purified by flash chromatography on silica gel silica: 200–300; eluant: petroleum ether/ethyl acetate (10:1) to provide pure product 4 as a yellow solid in 99% yield (33.8 mg). Dimethyl 2-(4-Hexylphenyl)-5-phenylisoxazolidine-3,3-dicarboxylate (5) 1H NMR (400 MHz, CDCl3, 300 K): δ = 7.54 (d, J = 6.9 Hz, 2 H), 7.42–7.33 (m, 3 H), 7.29–7.26 (m, 3 H), 7.09–7.06 (m, 2 H), 5.32 (dd, J = 9.3, 6.4 Hz, 1 H), 3.73 (s, 3 H), 3.48 (s, 3 H), 3.25–3.11 (m, 2 H), 2.55 (d, J = 7.5 Hz, 2 H), 1.27 (q, J = 5.4, 4.3 Hz, 8 H), 0.86 (d, J = 6.9 Hz, 3 H) ppm. 13C NMR (100 MHz, CDCl3, 300 K): δ = 169.0, 168.3, 144.7, 139.0, 137.5, 128.6, 128.2, 127.0, 118.7, 79.0, 78.8, 78.8, 53.0, 52.7, 47.6, 35.3, 31.7, 31.5, 28.8, 22.6, 14.1 ppm. HRMS (APCI): m/z [M + H]+ calcd for C25H32NO5: 426.2280; found: 426.2290. Dimethyl 5-Phenyl-2-(pyridin-2-yl)isoxazolidine-3,3-dicarboxylate (17) 1H NMR (400 MHz, CDCl3, 300 K): δ = 8.18–8.15 (m, 1 H), 7.61–7.57 (m, 1 H), 7.45–7.33 (m, 5 H), 7.15 (d, J = 8.4 Hz, 1 H), 6.83–6.80 (m, 1 H), 5.34 (dd, J = 9.1, 6.4 Hz, 1 H), 3.79 (d, J = 8.2 Hz, 6 H), 3.37 (dd, J = 12.8, 6.4 Hz, 1 H), 3.05 (dd, J = 12.8, 9.2 Hz, 1 H) ppm. 13C NMR (100 MHz, CDCl3, 300 K): δ = 169.4, 168.8, 158.5, 146.7, 137.8, 137.0, 128.7, 128.7, 126.8, 116.9, 109.9, 80.4, 75.4, 53.3, 53.2, 47.7 ppm. HRMS (APCI): m/z [M + H]+ calcd for C18H19N2O5: 343.1249; found: 343.1272. Dimethyl 5-Benzyl-2-phenylisoxazolidine-3,3-dicarboxylate (27) 1H NMR (400 MHz, CDCl3, 300 K): δ = 7.34–7.23 (m, 9 H), 7.01 (q, J = 4.4 Hz, 1 H), 4.60–4.53 (m, 1 H), 3.62 (s, 3 H), 3.55 (s, 3 H), 3.21 (dd, J = 13.8, 6.7 Hz, 1 H), 2.96–2.90 (m, 2 H), 2.81 (dd, J = 12.7, 8.7 Hz, 1 H) ppm. 13C NMR (100 MHz, CDCl3, 300 K): δ = 168.8, 168.6, 147.1, 137.3, 129.2, 128.5, 128.3, 126.7, 123.7, 117.8, 78.4, 77.8, 52.9, 52.8, 45.4, 38.9 ppm. HRMS (APCI): m/z [M + H]+ calcd for C20H22NO5: 356.1498; found: 356.1497. Dimethyl 5-(2-Oxopyrrolidin-1-yl)-2-phenylisoxazolidine-3,3-dicarboxylate (30) 1H NMR (400 MHz, CDCl3, 300 K): δ = 7.24 (d, J = 4.1 Hz, 4 H), 7.04–6.97 (m, 1 H), 4.45–4.38 (m, 1 H), 3.69 (s, 3 H), 3.51 (s, 3 H), 2.97 (dd, J = 12.5, 5.6 Hz, 1 H), 2.68 (dd, J = 12.3, 9.6 Hz, 1 H), 1.86–1.64 (m, 6 H), 1.53 (dd, J = 13.1, 8.0 Hz, 2 H), 1.28–1.17 (m, 3 H), 1.02–0.93 (m, 2 H) ppm. 13C NMR (100 MHz, CDCl3, 300 K): δ = 169.2, 168.6, 147.3, 128.3, 123.4, 117.6, 78.4, 75.5, 52.9, 52.7, 46.5, 40.2, 35.3, 33.6, 33.2, 26.4, 26.2, 26.1 ppm. HRMS (APCI): m/z [M + H]+ calcd for C20H28NO5: 362.1967; found: 362.1966. Dimethyl 5-Formyl-5-methyl-2-phenylisoxazolidine-3,3-dicarboxylate (37) 1H NMR (400 MHz, CDCl3, 300 K): δ = 9.68 (s, 1 H), 7.37 (d, J = 8.3 Hz, 2 H), 7.29 (d, J = 7.6 Hz, 2 H), 7.12 (t, J = 7.3 Hz, 1 H), 3.80 (s, 3 H), 3.32 (s, 3 H), 3.17 (d, J = 13.0 Hz, 1 H), 3.00 (d, J = 13.0 Hz, 1 H), 1.49 (s, 3 H) ppm. 13C NMR (100 MHz, CDCl3, 300 K): δ = 203.1, 168.4, 167.0, 145.7, 128.3, 125.3, 119.6, 84.0, 77.9, 53.1, 52.5, 45.8, 17.4 ppm. HRMS (APCI): m/z [M + H]+ calcd for C15H18NO6: 308.1134; found: 308.1135. Methyl 3-Acetyl-2,5-diphenylisoxazolidine-3-carboxylate (45) 1H NMR (400 MHz, CDCl3, 300 K): δ = 7.48–7.43 (m, 2 H), 7.42–7.34 (m, 3 H), 7.31–7.26 (m, 2 H), 7.20 (dd, J = 8.8, 1.1 Hz, 2 H), 7.05–7.00 (m, 1 H), 5.39 (dd, J = 8.9, 6.4 Hz, 1 H), 3.72 (s, 3 H), 3.41 (dd, J = 12.9, 6.4 Hz, 1 H), 2.86 (dd, J = 12.9, 9.0 Hz, 1 H), 2.15 (s, 3 H) ppm. 13C NMR (100 MHz, CDCl3, 300 K): δ = 203.5, 168.8, 146.8, 137.3, 128.8, 128.7, 128.6, 126.5, 123.3, 116.7, 83.5, 79.1, 53.0, 46.5, 26.7 ppm. HRMS (APCI): m/z [M + H]+ calcd for C19H20NO4: 326.1392; found: 326.1390. For the Synthesis of 11, 13, 39, and 40 To a sealed tube equipped with a magnetic stir bar were added 1a′ (0.20 mmol, 2.0 equiv), 2 (0.10 mmol, 1.0 equiv), 3 (0.20 mmol, 2.0 equiv), and dry DCM (1.0 mL). Then, the temperature of metal sand bath was set to 70 ℃, and the closed reaction system was stirred for 18 h. The solvent was removed by vacuum, and the crude product was purified by flash chromatography on silica gel silica: 200–300; eluant: petroleum ether/ethyl acetate (10:1) to provide pure product. Dimethyl 2-Phenyltetrahydrofuro[3,2-d]isoxazole-3,3(2H)-dicarboxylate (40) 1H NMR (400 MHz, CDCl3, 300 K): δ = 7.41 (s, 2 H), 7.28–7.24 (m, 3 H), 7.12 (t, J = 7.3 Hz, 1 H), 5.99 (d, J = 5.3 Hz, 1 H), 4.29–4.22 (m, 1 H), 4.03–3.99 (m, 1 H), 3.86 (dd, J = 6.4, 3.1 Hz, 1 H), 3.83 (s, 3 H), 3.32 (s, 3 H), 2.07 (s, 1 H), 1.92–1.83 (m, 1 H) ppm. 13C NMR (100 MHz, CDCl3, 300 K): δ = 167.1, 166.2, 146.0, 128.1, 125.8, 121.1, 104.4, 82.7, 69.1, 54.2, 52.8, 52.1, 29.1 ppm. HRMS (APCI): m/z [M + H]+ calcd for C15H18NO6: 308.1134; found: 308.1134.