Synlett
DOI: 10.1055/a-2298-0282
letter

Introduction of an N-Amino Group onto 4-(Tetrazol-5-yl)-5-nitro-1,2,3-triazole: A Strategy for Enhancing the Density and Performance of Energetic Materials

Xun Huang
a   Key Laboratory of Fluorine and Nitrogen Chemistry and ­Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, P. R. of China
,
Pinxu Zhao
a   Key Laboratory of Fluorine and Nitrogen Chemistry and ­Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, P. R. of China
b   School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei Road 200, Nanjing, 210094, Jiangsu, P. R. of China
,
Haifeng Huang
a   Key Laboratory of Fluorine and Nitrogen Chemistry and ­Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, P. R. of China
,
Jun Yang
a   Key Laboratory of Fluorine and Nitrogen Chemistry and ­Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, P. R. of China
› Author Affiliations
This work was financially supported by the National Natural Science Foundation of China (NSFC) (Grant No. 22175196), the CAS Project for Young Scientists in Basic Research (Grant No.YSBR-052), the Shanghai Science and Technology Committee (20XD1404800) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB0590000).


Abstract

2-Amino-5-nitro-4-(tetrazol-5-yl)-1,2,3-triazole (HANTT), its corresponding energetic salts and a dimeric azo compound are successfully synthesized. Compared to 5-nitro-4-(tetrazol-5-yl)-1,2,3-triazole (H2NTT), the neutral N-amino compound HANTT exhibits excellent properties in many aspects, including a higher density (ρ = 1.86 g cm–3), a better detonation performance (D v = 8931 m s–1, P = 32.2 GPa) and a higher thermal decomposition temperature (T d = 237 °C). Among the prepared materials, the hydroxylammonium energetic salt exhibits the best detonation performance (D v = 9096 m s–1, P = 32.8 GPa) and an acceptable mechanical sensitivity (IS = 12 J, FS = 144 N). HANTT, the energetic salts and the azo compound are fully characterized by infrared spectroscopy, multinuclear NMR spectroscopy, elemental analysis and differential scanning calorimetry.

Supporting Information



Publication History

Received: 27 February 2024

Accepted after revision: 02 April 2024

Accepted Manuscript online:
02 April 2024

Article published online:
24 April 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Klapötke TM. Chemistry of High-Energy Materials, 6th ed. Walter de Gruyter; Berlin/Boston: 2022
  • 2 Bhatia P, Pandey K, Avasthi B, Das P, Ghule VD, Kumar D. J. Org. Chem. 2023; 88: 15085
  • 3 Seth S, Pathak C. Cryst. Growth Des. 2023; 23: 4669
  • 4 Tang J, Yang H, Cui Y, Cheng G. Mater. Chem. Front. 2021; 4: 7108
  • 5 Ran Y, Song S, Wang K, Zhang Q. J. Org. Chem. 2023; 88: 8936
  • 6 Zeng Z, Zhao Z, Yin Z, Tang M, Liu Y, Huang W, Tang Y. Synlett 2024; 35 in press; DOI: DOI: 10.1055/a-2181-0453.
  • 7 Tang J, Chen D, Zhang G, Yang H, Cheng G. Synlett 2019; 30: 885
  • 8 Ma J, Cheng G, Ju X, Yi Z, Zhu S, Zhang Z, Yang H. Dalton Trans. 2018; 47: 14483
  • 9 Chen S, Li L, Song S, Zhang Q. Cryst. Growth Des. 2023; 23: 4970
  • 10 Chinnam AK, Staples RJ, Shreeve JM. J. Org. Chem. 2021; 86: 7781
  • 11 Li C, Zhu T, Lei C, Cheng G, Xiao C, Yang H. J. Mater. Chem. A 2023; 11: 12043
  • 12 Deltsov ID, Ananyev IV, Meerov DM, Fershtat LL. J. Org. Chem. 2024; 89: 174
  • 13 Lei C, Tang J, Zhuang Q, Cheng G, Yang H. Org. Lett. 2023; 25: 3487
  • 14 Yadav AK, Ghule VD, Dharavath S. J. Org. Chem. 2023; 88: 13178
  • 15 Yang H, Huang L, Xu M, Tang Y, Wang B, Cheng G. J. Org. Chem. 2019; 84: 10629
  • 16 Yount J, Zeller M, Byrd EF. C, Piercey DG. Inorg. Chem. 2021; 60: 16204
  • 17 Zhang J, Jin Z, Hao W, Guo Z, Wang Y, Peng R, Jin B. Cryst. Growth Des. 2023; 23: 4499
  • 18 He C, Yin P, Mitchell LA, Parrish DA, Shreeve JM. Chem. Commun. 2016; 52: 8123
  • 19 Lai Q, Fei T, Yin P, Shreeve JM. Chem. Eng. J. 2021; 410: 128148
  • 20 Xiong J, Cai J, Lai Q, Yin P, Pang S. Chem. Commun. 2022; 58: 10647
  • 21 Gu H, Cheng G, Yang H. New J. Chem. 2021; 45: 7758
  • 22 Zhang J, Dharavath S, Mitchell LA, Parrish DA, Shreeve JM. J. Am. Chem. Soc. 2016; 138: 7500
  • 23 Wang Y, Hu L, Pang S, Shreeve JM. J. Mater. Chem. A 2023; 11: 13876
  • 24 Zhang G, Yi Z, Cheng G, Yang W, Yang H. ACS Appl. Mater. Interfaces 2022; 145: 10594
  • 25 Wang R, Xu H, Guo Y, Sa R, Shreeve JM. J. Am. Chem. Soc. 2010; 132: 11904
  • 26 Zhang W, Zhang J, Deng M, Qi X, Nie F, Zhang Q. Nat. Commun. 2017; 8: 181
  • 27 Ma J, Chinnam AK, Cheng G, Yang H, Yang H, Zhang J, Shreeve JM. Angew. Chem. Int. Ed. 2021; 60: 5497
  • 28 He C, Imler GH, Parrish DA, Shreeve JM. J. Mater. Chem. A 2018; 6: 16833
  • 29 Izsák D, Klapötke TM, Pflüger C. Dalton Trans. 2015; 44: 17054
  • 30 Dippold AA, Izsák D, Klapötke TM, Pflüger C. Chem. Eur. J. 2016; 22: 1768
  • 31 Yin P, He C, Shreeve JM. Chem. Eur. J. 2016; 22: 2013
  • 32 Yin P, Shreeve JM. Angew. Chem. Int. Ed. 2015; 54: 14513 ; Angew. Chem., 2015, 127, 14721
  • 33 Huang X, Chen L, Huang H, Yang J. Energetic Mater. Front. 2023; 4: 221
  • 34 Wozniak DR, Salfer B, Zeller M, Byrd EF. C. ChemistryOpen 2020; 9: 806
  • 35 Tang Y, Imler GH, Parrish DA, Shreeve JM. ACS Appl. Energy Mater. 2019; 2: 8871
  • 36 Tests were conducted according to: UN Recommendations on the Transport of Dangerous Goods, Manual of Tests and Criteria, 5th rev. ed.; United Nations Publications: New York, 2009; 75–82 and 104–107
  • 37 Zhang C, Wang X, Huang H. J. Am. Chem. Soc. 2008; 130: 8359
  • 38 Li S, Bu R, Gou R.-j. Zhang C. 2021; 21: 6619
  • 39 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian 09, Revision a. 02. Gaussian Inc; Wallingford (CT, USA): 2009
  • 40 Klapotke TM, Piercey DG, Stierstorfer J. Dalton Trans. 2012; 41: 9451