Synthesis 2017; 49(22): 5045-5058
DOI: 10.1055/s-0036-1589068
paper
© Georg Thieme Verlag Stuttgart · New York

The Friedel–Crafts Reaction of Indoles with Michael Acceptors Catalyzed by Magnesium and Calcium Salts

Mikhail N. Feofanov
Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, Moscow, 119991, Russian Federation   Email: beletska@org.chem.msu.ru
,
Maxim V. Anokhin
Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, Moscow, 119991, Russian Federation   Email: beletska@org.chem.msu.ru
,
Alexei D. Averin
Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, Moscow, 119991, Russian Federation   Email: beletska@org.chem.msu.ru
,
Irina P. Beletskaya*
Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, Moscow, 119991, Russian Federation   Email: beletska@org.chem.msu.ru
› Author Affiliations
This work was financially supported by the RSF grant 14-23-00186.
Further Information

Publication History

Received: 29 April 2017

Accepted after revision: 12 June 2017

Publication Date:
02 August 2017 (online)


Abstract

Friedel–Crafts alkylation of indole and its derivatives with a variety of electron-deficient alkenes catalyzed by Mg and Ca salts has been studied. The dependence of the results on the nature of the starting olefins, substituents on indole, and Michael acceptors, as well as on the composition of the Lewis acid is discussed. High yields of the addition products were achieved in the addition of indole to β,γ-unsaturated α-keto esters and coumarin derivatives, some nitroolefins, and arylidenemalonates. Reactions involving arylidenemalonates were found to be the most versatile and smooth, the best yields reached 92%. Among the Mg and Ca salts tested, magnesium iodide (MgI2) proved to be the most appropriate catalyst in the addition to various unsaturated carbonyl compounds, while calcium triflimide [Ca(NTf2)2] efficiently catalyzed the addition to nitroolefins.

Supporting Information

 
  • References

  • 1 Acid Catalysis in Modern Organic Synthesis . Yamamoto H. Wiley–VCH; Weinheim: 2008
    • 2a Willis MC. Piccio VJ. D. Synlett 2002; 1625
    • 2b Deng G.-H. Hu H. Wei H.-X. Paré PW. Helv. Chim. Acta 2003; 86: 3510
    • 2c Hayashi K. Kujime E. Katayama H. Sano S. Nagao Y. Chem. Pharm. Bull. 2007; 55: 1773
    • 3a Tsubogo T. Yamashita Y. Kobayashi S. Top. Catal. 2014; 57: 935
    • 3b Morcillo SP. Presset M. Floquet S. Coeffard V. Greck C. Bour C. Gandon V. Eur. J. Org. Chem. 2016; 2688
    • 3c Shimizu S. Tsubogo T. Xu P. Kobayashi S. Org. Lett. 2015; 17: 2006
    • 3d Neel AJ. Johnson JS. J. Am. Chem. Soc. 2010; 132: 9688
    • 3e Ghosh A. Pandey AK. Banerjee P. J. Org. Chem. 2015; 80: 7235
    • 3f Campbell MJ. Johnson JS. Parsons AT. Pohlhaus PD. Sanders SD. J. Org. Chem. 2010; 75: 6317
    • 3g Parsons AT. Johnson JS. J. Am. Chem. Soc. 2009; 131: 3122
  • 4 Zhang X. Zhao C. Gu Y. J. Heterocycl. Chem. 2012; 49: 1143
    • 5a Li J. Liao Y. Zhang Y. Liu X. Lin L. Feng X. Chem. Commun. 2014; 50: 6672
    • 5b Yang D. Wang L. Han F. Li D. Zhao D. Wang R. Angew. Chem. Int. Ed. 2015; 54: 2185
  • 6 Kashima C. Miwa Y. Shibata S. Nakazono H. J. Heterocycl. Chem. 2003; 40: 681
    • 7a Zheng K. Yang Y. Zhao J. Yin C. Lin L. Liu X. Feng X. Chem. Eur. J. 2010; 16: 9969
    • 7b Zheng K. Yin C. Liu X. Lin L. Feng X. Angew. Chem. Int. Ed. 2011; 50: 2573
    • 7c Luo W. Zhao J. Ji J. Lin L. Liu X. Mei H. Feng X. Chem. Commun. 2015; 51: 10042
    • 8a Zhang X. Ye S. Hu S. Lett. Org. Chem. 2011; 8: 427
    • 8b Lu Y. Wang Y. Zhang X. J. Chem. Res. 2013; 37: 709
    • 8c Cutting GA. Stainforth NE. John MP. Kociok-Kohn G. Willis MC. J. Am. Chem. Soc. 2007; 129: 10632
  • 9 Carreira EM. Fischer C. Synthesis 2004; 1497
    • 10a Yin C. Lin L. Zhang D. Feng J. Liu X. Feng X. J. Org. Chem. 2015; 80: 9691
    • 10b Gerten AL. Slade MC. Pugh KM. Stanley LM. Org. Biomol. Chem. 2013; 11: 7834
    • 10c Desimoni G. Faita G. Mortoni A. Righetti P. Tetrahedron Lett. 1999; 40: 2001
    • 10d Sibi MP. Itoh K. Jasperse CP. J. Am. Chem. Soc. 2004; 126: 5366
  • 12 Coscia RW. Lambert TH. J. Am. Chem. Soc. 2009; 131: 2496
    • 13a Lv J. Li X. Zhong L. Luo S. Cheng J.-P. Org. Lett. 2010; 12: 1096
    • 13b Bugarin A. Connell BT. Chem. Commun. 2010; 2644
    • 13c Bugarin A. Connell BT. J. Org. Chem. 2009; 74: 4638
    • 14a Palomo C. Pazos R. Oiarbide M. Garcia JM. Adv. Synth. Catal. 2006; 348: 1161
    • 14b Vázquez J. Prieto A. Fernández R. Enders D. Lassaletta JM. Chem. Commun. 2002; 498
    • 14c van Lingen HL. Zhuang W. Hansen T. Rutjes FP. J. T. Jorgensen KA. Org. Biomol. Chem. 2003; 1: 1953
    • 14d Wales SM. Walker MM. Johnson JS. Org. Lett. 2013; 15: 2558
  • 15 Catalytic Asymmetric Friedel–Crafts Alkylations . Bandini M. Umani-Ronchi A. Wiley–VCH; Weinheim: 2009
    • 16a Beletskaya I. Tarasenko E. Synthesis 2017; 49: 1689
    • 16b Beletskaya IP. Averin AD. Curr. Organocatal. 2015; 3: 60
    • 16c Desyatkin VG. Anokhin MV. Rodionov VO. Beletskaya IP. Russ. J. Org. Chem. 2016; 52: 1719
  • 17 Rueping M. Nachtsheim BJ. Moreth SA. Bolte M. Angew. Chem. Int. Ed. 2008; 47: 593
  • 18 Schatz A. Rasappan R. Hager M. Gissibl A. Reiser O. Chem. Eur. J. 2008; 14: 7259
  • 19 Ye M.-C. Yang Y.-Y. Tang Y. Sun X.-L. Ma Z. Qin W.-M. Synlett 2006; 1240
  • 20 Gao Y.-H. Yang L. Zhou W. Xu L.-W. Xia C.-G. Appl. Organomet. Chem. 2009; 23: 114
  • 21 Audrain H. Thorhauge J. Hazell RG. Jørgensen KA. J. Org. Chem. 2000; 65: 4487
    • 22a Ogiwara Y. Takahashi K. Kitazawa T. Sakai N. J. Org. Chem. 2015; 80: 3101
    • 22b Zhang S. Cheng K. Wang X. Yin H. Bioorg. Med. Chem. 2012; 20: 6073
    • 22c Rogness DC. Markina NA. Waldo JP. Larock RC. J. Org. Chem. 2012; 77: 2743
    • 22d Ivanov KL. Villemson EV. Budynina EM. Ivanova OA. Trushkov IV. Melnikov MY. Chem. Eur. J. 2015; 21: 4857
  • 23 Horning E. Horning M. Dimmig D. Org. Synth. 1948; 28: 24
  • 24 Nenajdenko VG. Leshcheva IF. Balenkova ES. Tetrahedron 1994; 50: 775
  • 25 Worrall DE. Org. Synth. 1929; 9: 66
  • 26 Martin NJ. Cheng X. List B. J. Am. Chem. Soc. 2008; 130: 13862
  • 27 Baichurin RI. Baichurina LV. Aboskalova NI. Berestovitskaya VM. Russ. J. Gen. Chem. 2013; 83: 1764
  • 28 Xiao GQ. Liang BX. Chen SH. Ou TM. Bu XZ. Yan M. Arch. Pharm. (Weinheim, Ger.) 2012; 345: 767
  • 29 Jensen KB. Thorhauge J. Hazell RG. Jørgensen KA. Angew. Chem. Int. Ed. 2001; 40: 160
  • 30 Yadav JS. Sunny A. Reddy BV. S. Sabitha G. Synthesis 2001; 2165
  • 31 Sasaki S. Yamauchi T. Higashiyama K. Tetrahedron Lett. 2010; 51: 2326
  • 32 Weng J.-Q. Deng Q.-M. Wu L. Xu K. Wu H. Liu R.-R. Gao J.-R. Jia Y.-X. Org. Lett. 2014; 16: 776
  • 33 Jia Y.-X. Zhu S.-F. Yang Y. Zhou Q.-L. J. Org. Chem. 2006; 71: 75