J Pediatr Infect Dis 2017; 12(03): 147-156
DOI: 10.1055/s-0037-1602852
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Biology of T Helper Cells and Their Role in Neonatal Infection

Mohammed Abdulmageed
1   Division of Neonatology, Department of Pediatrics and Human Development, Michigan State University, College of Human Medicine, East Lansing, Michigan, United States
,
Said A. Omar
1   Division of Neonatology, Department of Pediatrics and Human Development, Michigan State University, College of Human Medicine, East Lansing, Michigan, United States
,
B. V. Madhukar
1   Division of Neonatology, Department of Pediatrics and Human Development, Michigan State University, College of Human Medicine, East Lansing, Michigan, United States
› Author Affiliations
Further Information

Publication History

08 December 2016

26 December 2016

Publication Date:
04 June 2017 (online)

Abstract

T lymphocytes play a central role in the adaptive immune system of the body to provide protection and surveillance against infections. Precursors of T cells begin their journey in the bone marrow and reach the thymus where they mature into naive T cells through a series of transitionary stages and interaction with thymic epithelial cells in various regions of the thymus to emerge as single-positive CD4+ or CD8+ T lymphocytes. The CD4+ naive T cells leave thymus and migrate to the peripheral lymphatic tissue for further differentiation into various subsets as a consequence of interaction with cytokines and altered gene regulation by specific transcription factors. This review summarized the intrathymic T-cell biology and various subsets of T cells, their characteristic cytokine production, and their role in neonatal infections.

 
  • References

  • 1 Shane AL, Stoll BJ. Neonatal sepsis: progress towards improved outcomes. J Infect 2014; 68 (Suppl. 01) S24-S32
  • 2 Ananthakrishnan S, Gunasekaran D. Etiology and risk factors for early onset neonatal sepsis. Indian J Med Microbiol 2009; 27 (03) 279
  • 3 Cohen-Wolkowiez M, Moran C, Benjamin DK. , et al. Early and late onset sepsis in late preterm infants. Pediatr Infect Dis J 2009; 28 (12) 1052-1056
  • 4 Weston EJ, Pondo T, Lewis MM. , et al. The burden of invasive early-onset neonatal sepsis in the United States, 2005-2008. Pediatr Infect Dis J 2011; 30 (11) 937-941
  • 5 Wynn JL, Scumpia PO, Winfield RD. , et al. Defective innate immunity predisposes murine neonates to poor sepsis outcome but is reversed by TLR agonists. Blood 2008; 112 (05) 1750-1758
  • 6 PrabhuDas M, Adkins B, Gans H. , et al. Challenges in infant immunity: implications for responses to infection and vaccines. Nat Immunol 2011; 12 (03) 189-194
  • 7 Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 2011; 34 (05) 637-650
  • 8 Zhu J, Paul WE. CD4 T cells: fates, functions, and faults. Blood 2008; 112 (05) 1557-1569
  • 9 Anderson G, Jenkinson EJ. Lymphostromal interactions in thymic development and function. Nat Rev Immunol 2001; 1 (01) 31-40
  • 10 Nitta T, Murata S, Ueno T, Tanaka K, Takahama Y. Thymic microenvironments for T-cell repertoire formation. Adv Immunol 2008; 99: 59-94
  • 11 Petrie HT, Tourigny M, Burtrum DB, Livak F. Precursor thymocyte proliferation and differentiation are controlled by signals unrelated to the pre-TCR. J Immunol 2000; 165 (06) 3094-3098
  • 12 Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonegawa S, Papaioannou VE. RAG-1-deficient mice have no mature B and T lymphocytes. Cell 1992; 68 (05) 869-877
  • 13 Ritter MA, Boyd RL. Development in the thymus: it takes two to tango. Immunol Today 1993; 14 (09) 462-469
  • 14 van Ewijk W, Shores EW, Singer A. Crosstalk in the mouse thymus. Immunol Today 1994; 15 (05) 214-217
  • 15 Germain RN. T-cell development and the CD4-CD8 lineage decision. Nat Rev Immunol 2002; 2 (05) 309-322
  • 16 Saint-Ruf C, Ungewiss K, Groettrup M, Bruno L, Fehling HJ, von Boehmer H. Analysis and expression of a cloned pre-T cell receptor gene. Science 1994; 266 (5188): 1208-1212
  • 17 Zúñiga-Pflücker JC, Lenardo MJ. Regulation of thymocyte development from immature progenitors. Curr Opin Immunol 1996; 8 (02) 215-224
  • 18 Lind EF, Prockop SE, Porritt HE, Petrie HT. Mapping precursor movement through the postnatal thymus reveals specific microenvironments supporting defined stages of early lymphoid development. J Exp Med 2001; 194 (02) 127-134
  • 19 Chou HS, Nelson CA, Godambe SA, Chaplin DD, Loh DY. Germline organization of the murine T cell receptor beta-chain genes. Science 1987; 238 (4826): 545-548
  • 20 von Boehmer H. Selection of the T-cell repertoire: receptor-controlled checkpoints in T-cell development. Adv Immunol 2004; 84: 201-238
  • 21 Shinkai Y, Rathbun G, Lam KP. , et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 1992; 68 (05) 855-867
  • 22 Jung D, Alt FW. Unraveling V(D)J recombination; insights into gene regulation. Cell 2004; 116 (02) 299-311
  • 23 Krangel MS. Gene segment selection in V(D)J recombination: accessibility and beyond. Nat Immunol 2003; 4 (07) 624-630
  • 24 Dudley DD, Sekiguchi J, Zhu C. , et al. Impaired V(D)J recombination and lymphocyte development in core RAG1-expressing mice. J Exp Med 2003; 198 (09) 1439-1450
  • 25 Hamrouni A, Aublin A, Guillaume P, Maryanski JL. T cell receptor gene rearrangement lineage analysis reveals clues for the origin of highly restricted antigen-specific repertoires. J Exp Med 2003; 197 (05) 601-614
  • 26 von Boehmer H. Unique features of the pre-T-cell receptor α-chain: not just a surrogate. Nat Rev Immunol 2005; 5 (07) 571-577
  • 27 Carrasco YR, Navarro MN, Toribio ML. A role for the cytoplasmic tail of the pre-T cell receptor (TCR) α chain in promoting constitutive internalization and degradation of the pre-TCR. J Biol Chem 2003; 278 (16) 14507-14513
  • 28 Guy CS, Vignali DAA. Organization of proximal signal initiation at the TCR:CD3 complex. Immunol Rev 2009; 232 (01) 7-21
  • 29 Letourneur F, Klausner RD. Activation of T cells by a tyrosine kinase activation domain in the cytoplasmic tail of CD3 epsilon. Science 1992; 255 (5040): 79-82
  • 30 Delgado P, Fernández E, Dave V, Kappes D, Alarcón B. CD3delta couples T-cell receptor signalling to ERK activation and thymocyte positive selection. Nature 2000; 406 (6794): 426-430
  • 31 Wang Y, Becker D, Vass T, White J, Marrack P, Kappler JW. A conserved CXXC motif in CD3ε is critical for T cell development and TCR signaling. PLoS Biol 2009; 7 (12) e1000253
  • 32 Yamashita I, Nagata T, Tada T, Nakayama T. CD69 cell surface expression identifies developing thymocytes which audition for T cell antigen receptor-mediated positive selection. Int Immunol 1993; 5 (09) 1139-1150
  • 33 Fazekas de St Groth B, Smith AL, Higgins CA. T cell activation: in vivo veritas. Immunol Cell Biol 2004; 82 (03) 260-268
  • 34 Adkins B, Mueller C, Okada CY, Reichert RA, Weissman IL, Spangrude GJ. Early events in T-cell maturation. Annu Rev Immunol 1987; 5: 325-365
  • 35 Cory S. Regulation of lymphocyte survival by the bcl-2 gene family. Annu Rev Immunol 1995; 13: 513-543
  • 36 Akashi K, Kondo M, von Freeden-Jeffry U, Murray R, Weissman IL. Bcl-2 rescues T lymphopoiesis in interleukin-7 receptor-deficient mice. Cell 1997; 89 (07) 1033-1041
  • 37 Takahama Y, Nitta T, Mat Ripen A, Nitta S, Murata S, Tanaka K. ; Takayama y et al. Role of thymic cortex-specific self-peptides in positive selection of T cells. Semin Immunol 2010; 22 (05) 287-293
  • 38 Fukui Y, Ishimoto T, Utsuyama M. , et al. Positive and negative CD4+ thymocyte selection by a single MHC class II/peptide ligand affected by its expression level in the thymus. Immunity 1997; 6 (04) 401-410
  • 39 Klein L, Kyewski B, Allen PM, Hogquist KA. Positive and negative selection of the T cell repertoire: what thymocytes see (and don't see). Nat Rev Immunol 2014; 14 (06) 377-391
  • 40 Misslitz A, Pabst O, Hintzen G. , et al. Thymic T cell development and progenitor localization depend on CCR7. J Exp Med 2004; 200 (04) 481-491
  • 41 Kwan J, Killeen N. CCR7 directs the migration of thymocytes into the thymic medulla. J Immunol 2004; 172 (07) 3999-4007
  • 42 Ehrlich LI, Oh DY, Weissman IL, Lewis RS. Differential contribution of chemotaxis and substrate restriction to segregation of immature and mature thymocytes. Immunity 2009; 31 (06) 986-998
  • 43 Nitta T, Nitta S, Lei Y, Lipp M, Takahama Y. CCR7-mediated migration of developing thymocytes to the medulla is essential for negative selection to tissue-restricted antigens. Proc Natl Acad Sci U S A 2009; 106 (40) 17129-17133
  • 44 Takahama Y. Journey through the thymus: stromal guides for T-cell development and selection. Nat Rev Immunol 2006; 6 (02) 127-135
  • 45 Scollay RG, Butcher EC, Weissman IL. Thymus cell migration. Quantitative aspects of cellular traffic from the thymus to the periphery in mice. Eur J Immunol 1980; 10 (03) 210-218
  • 46 Egerton M, Scollay R, Shortman K. Kinetics of mature T-cell development in the thymus. Proc Natl Acad Sci U S A 1990; 87 (07) 2579-2582
  • 47 Goldrath AW, Bevan MJ. Selecting and maintaining a diverse T-cell repertoire. Nature 1999; 402 (6759): 255-262
  • 48 Alexandropoulos K, Danzl NM. Thymic epithelial cells: antigen presenting cells that regulate T cell repertoire and tolerance development. Immunol Res 2012; 54 (1-3): 177-190
  • 49 Klein L, Hinterberger M, Wirnsberger G, Kyewski B. Antigen presentation in the thymus for positive selection and central tolerance induction. Nat Rev Immunol 2009; 9 (12) 833-844
  • 50 Xing Y, Wang X, Jameson SC, Hogquist KA. Late stages of T cell maturation in the thymus involve NF-κB and tonic type I interferon signaling. Nat Immunol 2016; 17 (05) 565-573
  • 51 McCaughtry TM, Wilken MS, Hogquist KA. Thymic emigration revisited. J Exp Med 2007; 204 (11) 2513-2520
  • 52 Matloubian M, Lo CG, Cinamon G. , et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 2004; 427 (6972): 355-360
  • 53 Weinreich MA, Hogquist KA. Thymic emigration: when and how T cells leave home. J Immunol 2008; 181 (04) 2265-2270
  • 54 Schelonka RL, Maheshwari A, Carlo WA. , et al; NICHD Neonatal Research Network. T cell cytokines and the risk of blood stream infection in extremely low birth weight infants. Cytokine 2011; 53 (02) 249-255
  • 55 Boursalian TE, Golob J, Soper DM, Cooper CJ, Fink PJ. Continued maturation of thymic emigrants in the periphery. Nat Immunol 2004; 5 (04) 418-425
  • 56 Chang J-F, Thomas III CA, Kung JT. Induction of high level IL-2 production in CD4+8- T helper lymphocytes requires post-thymic development. J Immunol 1991; 147 (03) 851-859
  • 57 Hendricks DW, Fink PJ. Recent thymic emigrants are biased against the T-helper type 1 and toward the T-helper type 2 effector lineage. Blood 2011; 117 (04) 1239-1249
  • 58 Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 1986; 136 (07) 2348-2357
  • 59 Lichtman AH, Kurt-Jones EA, Abbas AK. B-cell stimulatory factor 1 and not interleukin 2 is the autocrine growth factor for some helper T lymphocytes. Proc Natl Acad Sci U S A 1987; 84 (03) 824-827
  • 60 Boyton RJ, Altmann DM. Is selection for TCR affinity a factor in cytokine polarization?. Trends Immunol 2002; 23 (11) 526-529
  • 61 Ansel KM, McHeyzer-Williams LJ, Ngo VN, McHeyzer-Williams MG, Cyster JG. In vivo-activated CD4 T cells upregulate CXC chemokine receptor 5 and reprogram their response to lymphoid chemokines. J Exp Med 1999; 190 (08) 1123-1134
  • 62 Kitano M, Moriyama S, Ando Y. , et al. Bcl6 protein expression shapes pre-germinal center B cell dynamics and follicular helper T cell heterogeneity. Immunity 2011; 34 (06) 961-972
  • 63 Liu X, Chen X, Zhong B. , et al. Transcription factor achaete-scute homologue 2 initiates follicular T-helper-cell development. Nature 2014; 507 (7493): 513-518
  • 64 Coquet JM, Rausch L, Borst J. The importance of co-stimulation in the orchestration of T helper cell differentiation. Immunol Cell Biol 2015; 93 (09) 780-788
  • 65 Trinchieri G, Pflanz S, Kastelein RA. The IL-12 family of heterodimeric cytokines: new players in the regulation of T cell responses. Immunity 2003; 19 (05) 641-644
  • 66 Szabo SJ, Dighe AS, Gubler U, Murphy KM. Regulation of the interleukin (IL)-12R beta 2 subunit expression in developing T helper 1 (Th1) and Th2 cells. J Exp Med 1997; 185 (05) 817-824
  • 67 Afkarian M, Sedy JR, Yang J. , et al. T-bet is a STAT1-induced regulator of IL-12R expression in naïve CD4+ T cells. Nat Immunol 2002; 3 (06) 549-557
  • 68 Martín-Fontecha A, Thomsen LL, Brett S. , et al. Induced recruitment of NK cells to lymph nodes provides IFN-γ for T(H)1 priming. Nat Immunol 2004; 5 (12) 1260-1265
  • 69 Luckheeram RV, Zhou R, Verma AD, Xia B. CD4+T cells: differentiation and functions. Clin Dev Immunol 2012; 2012: 925135
  • 70 Lugo-Villarino G, Maldonado-Lopez R, Possemato R, Penaranda C, Glimcher LH. T-bet is required for optimal production of IFN-γ and antigen-specific T cell activation by dendritic cells. Proc Natl Acad Sci U S A 2003; 100 (13) 7749-7754
  • 71 Lazarevic V, Chen X, Shim JH. , et al. T-bet represses T(H)17 differentiation by preventing Runx1-mediated activation of the gene encoding RORγt. Nat Immunol 2011; 12 (01) 96-104
  • 72 Szabo SJ, Sullivan BM, Stemmann C, Satoskar AR, Sleckman BP, Glimcher LH. Distinct effects of T-bet in TH1 lineage commitment and IFN-γ production in CD4 and CD8 T cells. Science 2002; 295 (5553): 338-342
  • 73 Thieu VT. , et al. 2008. Signal transducer and activator of transcription 4 is required for the transcription factor T-bet to promote Thelper 1 cell-fate determination. Immunity 2002; 29: 679-690
  • 74 Djuretic IM, Levanon D, Negreanu V, Groner Y, Rao A, Ansel KM. Transcription factors T-bet and Runx3 cooperate to activate Ifng and silence Il4 in T helper type 1 cells. Nat Immunol 2007; 8 (02) 145-153
  • 75 Kaplan MH, Sun YL, Hoey T, Grusby MJ. Impaired IL-12 responses and enhanced development of Th2 cells in Stat4-deficient mice. Nature 1996; 382 (6587): 174-177
  • 76 Kaplan MH, Schindler U, Smiley ST, Grusby MJ. Stat6 is required for mediating responses to IL-4 and for development of Th2 cells. Immunity 1996; 4 (03) 313-319
  • 77 Takeda K, Tanaka T, Shi W. , et al. Essential role of Stat6 in IL-4 signalling. Nature 1996; 380 (6575): 627-630
  • 78 Zhu J, Guo L, Watson CJ, Hu-Li J, Paul WE. Stat6 is necessary and sufficient for IL-4's role in Th2 differentiation and cell expansion. J Immunol 2001; 166 (12) 7276-7281
  • 79 Zhu J, Yamane H, Cote-Sierra J, Guo L, Paul WE. GATA-3 promotes Th2 responses through three different mechanisms: induction of Th2 cytokine production, selective growth of Th2 cells and inhibition of Th1 cell-specific factors. Cell Res 2006; 16 (01) 3-10
  • 80 Zhu J, Min B, Hu-Li J. , et al. Conditional deletion of Gata3 shows its essential function in T(H)1-T(H)2 responses. Nat Immunol 2004; 5 (11) 1157-1165
  • 81 Pai SY, Truitt ML, Ho IC. GATA-3 deficiency abrogates the development and maintenance of T helper type 2 cells. Proc Natl Acad Sci U S A 2004; 101 (07) 1993-1998
  • 82 Swain SL, Weinberg AD, English M, Huston G. IL-4 directs the development of Th2-like helper effectors. J Immunol 1990; 145 (11) 3796-3806
  • 83 Paul WE. What determines Th2 differentiation, in vitro and in vivo?. Immunol Cell Biol 2010; 88 (03) 236-239
  • 84 Cote-Sierra J, Foucras G, Guo L. , et al. Interleukin 2 plays a central role in Th2 differentiation. Proc Natl Acad Sci U S A 2004; 101 (11) 3880-3885
  • 85 Yamane H, Zhu J, Paul WE. Independent roles for IL-2 and GATA-3 in stimulating naive CD4+ T cells to generate a Th2-inducing cytokine environment. J Exp Med 2005; 202 (06) 793-804
  • 86 Yagi J, Arimura Y, Takatori H, Nakajima H, Iwamoto I, Uchiyama T. Genetic background influences Th cell differentiation by controlling the capacity for IL-2-induced IL-4 production by naive CD4+ T cells. Int Immunol 2006; 18 (12) 1681-1690
  • 87 Patel DD, Kuchroo VK. Th17 cell pathway in human immunity: lessons from genetics and therapeutic interventions . Immunity 2015; 43 (06) 1040-1051
  • 88 Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 cells. Annu Rev Immunol 2009; 27: 485-517
  • 89 Manel N, Unutmaz D, Littman DR. The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nat Immunol 2008; 9 (06) 641-649
  • 90 Volpe E, Servant N, Zollinger R. , et al. A critical function for transforming growth factor-beta, interleukin 23 and proinflammatory cytokines in driving and modulating human T(H)-17 responses. Nat Immunol 2008; 9 (06) 650-657
  • 91 Bettelli E, Carrier Y, Gao W. , et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006; 441 (7090): 235-238
  • 92 Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 2006; 24 (02) 179-189
  • 93 Li MO, Sanjabi S, Flavell RA. Transforming growth factor-beta controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms. Immunity 2006; 25 (03) 455-471
  • 94 Yang XO, Pappu BP, Nurieva R. , et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity 2008; 28 (01) 29-39
  • 95 Harris TJ, Grosso JF, Yen HR. , et al. Cutting edge: An in vivo requirement for STAT3 signaling in TH17 development and TH17-dependent autoimmunity. J Immunol 2007; 179 (07) 4313-4317
  • 96 Laurence A, Tato CM, Davidson TS. , et al. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 2007; 26 (03) 371-381
  • 97 Kimura A, Naka T, Nohara K, Fujii-Kuriyama Y, Kishimoto T. Aryl hydrocarbon receptor regulates Stat1 activation and participates in the development of Th17 cells. Proc Natl Acad Sci U S A 2008; 105 (28) 9721-9726
  • 98 Schraml BU, Hildner K, Ise W. , et al. The AP-1 transcription factor Batf controls T(H)17 differentiation. Nature 2009; 460 (7253): 405-409
  • 99 Schmitt E, Germann T, Goedert S. , et al. IL-9 production of naive CD4+ T cells depends on IL-2, is synergistically enhanced by a combination of TGF-beta and IL-4, and is inhibited by IFN-gamma. J Immunol 1994; 153 (09) 3989-3996
  • 100 Schmitt N, Ueno H. Regulation of human helper T cell subset differentiation by cytokines. Curr Opin Immunol 2015; 34: 130-136
  • 101 Schmitt E, Klein M, Bopp T. Th9 cells, new players in adaptive immunity. Trends Immunol 2014; 35 (02) 61-68
  • 102 Duhen T, Geiger R, Jarrossay D, Lanzavecchia A, Sallusto F. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat Immunol 2009; 10 (08) 857-863
  • 103 Volpe E, Touzot M, Servant N. , et al. Multiparametric analysis of cytokine-driven human Th17 differentiation reveals a differential regulation of IL-17 and IL-22 production. Blood 2009; 114 (17) 3610-3614
  • 104 Trifari S, Kaplan CD, Tran EH, Crellin NK, Spits H. Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T(H)-17, T(H)1 and T(H)2 cells. Nat Immunol 2009; 10 (08) 864-871
  • 105 Schmetterer KG, Neunkirchner A, Pickl WF. Naturally occurring regulatory T cells: markers, mechanisms, and manipulation. FASEB J 2012; 26 (06) 2253-2276
  • 106 Dieckmann D, Plottner H, Berchtold S, Berger T, Schuler G. Ex vivo isolation and characterization of CD4(+)CD25(+) T cells with regulatory properties from human blood. J Exp Med 2001; 193 (11) 1303-1310
  • 107 Chen W, Jin W, Hardegen N. , et al. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J Exp Med 2003; 198 (12) 1875-1886
  • 108 Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003; 4 (04) 330-336
  • 109 Yagi H, Nomura T, Nakamura K. , et al. Crucial role of FOXP3 in the development and function of human CD25+CD4+ regulatory T cells. Int Immunol 2004; 16 (11) 1643-1656
  • 110 Martinez GJ, Zhang Z, Chung Y. , et al. Smad3 differentially regulates the induction of regulatory and inflammatory T cell differentiation. J Biol Chem 2009; 284 (51) 35283-35286
  • 111 Burchill MA, Yang J, Vogtenhuber C, Blazar BR, Farrar MA. IL-2 receptor β-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J Immunol 2007; 178 (01) 280-290
  • 112 Wu Y, Borde M, Heissmeyer V. , et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 2006; 126 (02) 375-387
  • 113 Pot C, Jin H, Awasthi A. , et al. Cutting edge: IL-27 induces the transcription factor c-Maf, cytokine IL-21, and the costimulatory receptor ICOS that coordinately act together to promote differentiation of IL-10-producing Tr1 cells. J Immunol 2009; 183 (02) 797-801
  • 114 Ueno H, Banchereau J, Vinuesa CG. Pathophysiology of T follicular helper cells in humans and mice. Nat Immunol 2015; 16 (02) 142-152
  • 115 Baumjohann D, Okada T, Ansel KM. Cutting edge: Distinct waves of BCL6 expression during T follicular helper cell development. J Immunol 2011; 187 (05) 2089-2092
  • 116 Choi YS, Kageyama R, Eto D. , et al. ICOS receptor instructs T follicular helper cell versus effector cell differentiation via induction of the transcriptional repressor Bcl6. Immunity 2011; 34 (06) 932-946
  • 117 Sweet RA, Lee SK, Vinuesa CG. Developing connections amongst key cytokines and dysregulated germinal centers in autoimmunity. Curr Opin Immunol 2012; 24 (06) 658-664
  • 118 Schmitt N, Bustamante J, Bourdery L. , et al. IL-12 receptor β1 deficiency alters in vivo T follicular helper cell response in humans. Blood 2013; 121 (17) 3375-3385
  • 119 Schmitt N, Liu Y, Bentebibel SE. , et al. The cytokine TGF-β co-opts signaling via STAT3-STAT4 to promote the differentiation of human TFH cells. Nat Immunol 2014; 15 (09) 856-865
  • 120 Mosmann TR, Coffman RL. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 1989; 7: 145-173
  • 121 Chen N, Field EH. Enhanced type 2 and diminished type 1 cytokines in neonatal tolerance. Transplantation 1995; 59 (07) 933-941
  • 122 Sadeghi K, Berger A, Langgartner M. , et al. Immaturity of infection control in preterm and term newborns is associated with impaired toll-like receptor signaling. J Infect Dis 2007; 195 (02) 296-302
  • 123 Rose S, Lichtenheld M, Foote MR, Adkins B. Murine neonatal CD4+ cells are poised for rapid Th2 effector-like function. J Immunol 2007; 178 (05) 2667-2678
  • 124 Adkins B, Leclerc C, Marshall-Clarke S. Neonatal adaptive immunity comes of age. Nat Rev Immunol 2004; 4 (07) 553-564
  • 125 Zaghouani H, Hoeman CM, Adkins B. Neonatal immunity: faulty T-helpers and the shortcomings of dendritic cells. Trends Immunol 2009; 30 (12) 585-591
  • 126 Hassan MA, Eldin AM, Ahmed MMT. T - helper2 /T - helper1 imbalance in respiratory syncytial virus bronchiolitis in relation to disease severity and outcome. Egypt J Immunol 2008; 15 (02) 153-160
  • 127 Melin P. Neonatal group B streptococcal disease: from pathogenesis to preventive strategies. Clin Microbiol Infect 2011; 17 (09) 1294-1303
  • 128 Lione VdeO, Santos MH, Oliveira JS, Mattos-Guaraldi AL, Nagao PE. Interferon-γ inhibits group B Streptococcus survival within human endothelial cells. Mem Inst Oswaldo Cruz 2014; 109 (07) 940-943
  • 129 Joyner JL, Augustine NH, Taylor KA, La Pine TR, Hill HR. Effects of group B streptococci on cord and adult mononuclear cell interleukin-12 and interferon-γ mRNA accumulation and protein secretion. J Infect Dis 2000; 182 (03) 974-977
  • 130 LeMessurier K, Häcker H, Tuomanen E, Redecke V. Inhibition of T cells provides protection against early invasive pneumococcal disease. Infect Immun 2010; 78 (12) 5287-5294
  • 131 Patel KK, Webley WC. Evidence of infectious asthma phenotype: Chlamydia-induced allergy and pathogen-specific IgE in a neonatal mouse model. PLoS One 2013; 8 (12) e83453
  • 132 Pulendran B, Artis D. New paradigms in type 2 immunity. Science 2012; 337 (6093): 431-435
  • 133 Szabo SJ, Sullivan BM, Peng SL, Glimcher LH. Molecular mechanisms regulating Th1 immune responses. Annu Rev Immunol 2003; 21: 713-758
  • 134 Sospedra M, Martin R. Immunology of multiple sclerosis. Annu Rev Immunol 2005; 23: 683-747
  • 135 Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 2000; 100 (06) 655-669
  • 136 Jovanovic DV, Di Battista JA, Martel-Pelletier J. , et al. IL-17 stimulates the production and expression of proinflammatory cytokines, IL-beta and TNF-alpha, by human macrophages. J Immunol 1998; 160 (07) 3513-3521
  • 137 Aarvak T, Chabaud M, Miossec P, Natvig JB. IL-17 is produced by some proinflammatory Th1/Th0 cells but not by Th2 cells. J Immunol 1999; 162 (03) 1246-1251
  • 138 Albanesi C, Scarponi C, Cavani A, Federici M, Nasorri F, Girolomoni G. Interleukin-17 is produced by both Th1 and Th2 lymphocytes, and modulates interferon-gamma- and interleukin-4-induced activation of human keratinocytes. J Invest Dermatol 2000; 115 (01) 81-87
  • 139 Molet S, Hamid Q, Davoine F. , et al. IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines. J Allergy Clin Immunol 2001; 108 (03) 430-438
  • 140 Cua DJ, Sherlock J, Chen Y. , et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 2003; 421 (6924): 744-748
  • 141 Komiyama Y, Nakae S, Matsuki T. , et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol 2006; 177 (01) 566-573
  • 142 Haak S, Croxford AL, Kreymborg K. , et al. IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice. J Clin Invest 2009; 119 (01) 61-69
  • 143 El-Behi M, Ciric B, Dai H. , et al. The encephalitogenicity of T(H)17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF. Nat Immunol 2011; 12 (06) 568-575
  • 144 Codarri L, Gyülvészi G, Tosevski V. , et al. RORγt drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat Immunol 2011; 12 (06) 560-567
  • 145 Stockinger B, Veldhoen M, Martin B. Th17 T cells: linking innate and adaptive immunity. Semin Immunol 2007; 19 (06) 353-361
  • 146 Belkaid Y. Regulatory T cells and infection: a dangerous necessity. Nat Rev Immunol 2007; 7 (11) 875-888
  • 147 Buelens C, Verhasselt V, De Groote D, Thielemans K, Goldman M, Willems F. Human dendritic cell responses to lipopolysaccharide and CD40 ligation are differentially regulated by interleukin-10. Eur J Immunol 1997; 27 (08) 1848-1852
  • 148 Buelens C, Willems F, Delvaux A. , et al. Interleukin-10 differentially regulates B7-1 (CD80) and B7-2 (CD86) expression on human peripheral blood dendritic cells. Eur J Immunol 1995; 25 (09) 2668-2672
  • 149 Royer B, Varadaradjalou S, Saas P, Guillosson JJ, Kantelip JP, Arock M. Inhibition of IgE-induced activation of human mast cells by IL-10. Clin Exp Allergy 2001; 31 (05) 694-704
  • 150 Takanaski S, Nonaka R, Xing Z, O'Byrne P, Dolovich J, Jordana M. Interleukin 10 inhibits lipopolysaccharide-induced survival and cytokine production by human peripheral blood eosinophils. J Exp Med 1994; 180 (02) 711-715
  • 151 Taylor A, Verhagen J, Akkoç T. , et al. IL-10 suppresses CD2-mediated T cell activation via SHP-1. Mol Immunol 2009; 46 (04) 622-629