Synlett 2019; 30(15): 1795-1798
DOI: 10.1055/s-0039-1690194
letter
© Georg Thieme Verlag Stuttgart · New York

A Multifunctional HBED-Type Chelator with Dual Conjugation Capabilities for Radiopharmaceutical Development

Ata Makarem
a   German Cancer Research Center (DKFZ) Heidelberg, Division of Radiopharmaceutical Chemistry, INF 223, d-69120 Heidelberg, Germany   Email: a.makarem@dkfz.de
b   The Institute of Cancer Research, Division of Radiotherapy and Imaging, 123 Old Brompton Road, SW7 3RP, London, UK
,
Mohammadreza Kamali Sarvestani
a   German Cancer Research Center (DKFZ) Heidelberg, Division of Radiopharmaceutical Chemistry, INF 223, d-69120 Heidelberg, Germany   Email: a.makarem@dkfz.de
c   Ruprecht-Karls-Universität-Heidelberg, Institute of Inorganic Chemistry, INF 270, DE-69120 Heidelberg, Germany
,
Karel D. Klika
d   German Cancer Research Center (DKFZ) Heidelberg, Molecular Structure Analysis, INF 280, d-69120 Heidelberg, Germany
,
Klaus Kopka
a   German Cancer Research Center (DKFZ) Heidelberg, Division of Radiopharmaceutical Chemistry, INF 223, d-69120 Heidelberg, Germany   Email: a.makarem@dkfz.de
e   German Cancer Consortium (DKTK), d-69120 Heidelberg, Germany
› Author Affiliations
This work was partly funded by a grant from German Cancer Aid (Deutsche Krebshilfe), project number 70112043.
Further Information

Publication History

Received: 22 July 2019

Accepted after revision: 15 August 2019

Publication Date:
26 August 2019 (online)


Abstract

Bifunctional HBED chelators are hexadentate complexing ligands (chelators) that tightly coordinate to trivalent gallium and, additionally, are able to bind to bioactive molecules. In nuclear medicine, HBED-based radiopharmaceuticals are used as powerful radiotracers for tumor imaging. Among variants of bifunctional HBED chelators, HBED-CC is the most well-known; it possesses two terminal carboxylic acid groups that are able to undergo bioconjugation by amide-bond formation. However, to permit bioconjugation through click coupling, we previously modified the structure of HBED-CC and introduced HBED-NN chelator bearing two azide functions. We have now combined the conjugation capabilities of HBED-CC and HBED-NN chelators in one molecule and have created HBED-NC, which possesses both azide and carboxylic acid groups. The advantage of HBED-NC is that it provides options for constructing either monomeric or heterodimeric radiolabeling precursors. This work describes the synthesis of HBED-NC by either of two pathways.

Supporting Information

 
  • References and Notes

  • 1 New address: K. Kopka, Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany.
    • 2a Hope TA, Truillet C, Ehman EC, Afshar-Oromieh A, Aggarwal R, Ryan CJ, Carroll PR, Small EJ, Evans MJ. J. Nucl. Med. 2017; 58: 81
    • 2b Hope TA, Aggarwal R, Chee B, Tao D, Greene KL, Cooperberg MR, Feng F, Chang A, Ryan CJ, Small EJ, Carroll PR. J. Nucl. Med. 2017; 58: 1956
    • 2c Fendler WP, Eiber M, Beheshti M, Bomanji J, Ceci F, Cho S, Giesel F, Haberkorn U, Hope TA, Kopka K, Krause BJ, Mottaghy FM, Schöder H, Sunderland J, Wan S, Wester H.-J, Fanti S, Herrmann K. Eur. J. Nucl. Med. Mol. Imaging 2017; 44: 1014
    • 2d McCarthy M, Langton T, Kumar D, Campbell A. Eur. J. Nucl. Med. Mol. Imaging 2017; 44: 1455
  • 3 Pyka T, Weirich G, Einspieler I, Maurer T, Theisen J, Hatzichristodoulou G, Schwamborn K, Schwaiger M, Eiber M. J. Nucl. Med. 2016; 57: 367
  • 4 Rauscher I, Maurer T, Beer AJ, Graner F.-P, Haller B, Weirich G, Doherty A, Gschwend JE, Schwaiger M, Eiber M. J. Nucl. Med. 2016; 57: 1713
  • 5 Haberkorn U, Eder M, Kopka K, Babich JW, Eisenhut M. Clin. Cancer Res. 2016; 22: 9
  • 6 Verburg FA, Krohn T, Heinzel A, Mottaghy FM, Behrendt FF. Eur. J. Nucl. Med. Mol. Imaging 2015; 42: 1622
  • 7 Eder M, Knackmuss S, Le Gall F, Reusch U, Rybin V, Little M, Haberkorn U, Mier W, Eisenhut M. Eur. J. Nucl. Med. Mol. Imaging 2010; 37: 1397
  • 8 Liolios C, Schäfer M, Haberkorn U, Eder M, Kopka K. Bioconjugate Chem. 2016; 27: 737
    • 9a Baranski AC, Schäfer M, Bauder-Wüst U, Wacker A, Schmidt J, Liolios C, Mier W, Haberkorn U, Eisenhut M, Kopka K, Eder M. Bioconjugate Chem. 2017; 28: 2485
    • 9b Liolios C, Buchmuller B, Bauder-Wüst U, Schäfer M, Leotta K, Haberkorn U, Eder M, Kopka K. J. Med. Chem. 2018; 61: 2062
    • 9c Liolios C, Sachpekidis C, Schäfer M, Kopka K. J. Labelled Compd. Radiopharm. 2019; 62: 510
    • 10a Afshar-Oromieh A, Zechmann CM, Malcher A, Eder M, Eisenhut M, Linhart HG, Holland-Letz T, Hadaschik BA, Giesel FL, Debus JJ, Haberkorn U. Eur. J. Nucl. Med. Mol. Imaging 2014; 41: 11
    • 10b Afshar-Oromieh A, Haberkorn U, Eder M, Eisenhut M, Zechmann CM. Eur. J. Nucl. Med. Mol. Imaging 2012; 39: 1085
    • 10c Eder M, Schäfer M, Bauder-Wüst U, Hull WE, Wängler C, Mier W, Haberkorn U, Eisenhut M. Bioconjugate Chem. 2012; 23: 688
    • 11a Grimmond BJ, Rishel MJ, Luttrell MT. US 20110077396, 2011
    • 11b Grimmond BJ, Rishel MJ. US 20140088314, 2014
  • 12 Schuhmacher J, Klivényi G, Matys R, Stadler M, Regiert T, Hauser H, Doll J, Maier-Borst W, Zöller M. Cancer Res. 1995; 55: 115
    • 13a Zha Z, Song J, Choi SR, Wu Z, Ploessl K, Smith M, Kung H. Bioconjugate Chem. 2016; 27: 1314
    • 13b Kung HF, Wu Z, Choi SR, Ploessl K, Zha Z. WO 2017007790, 2017
  • 14 Makarem A, Konrad M, Liolios C, Kopka K. Synlett 2018; 29: 1239
  • 15 Makarem A, Klika KD, Litau G, Remde Y, Kopka K. J. Org. Chem. 2019; 84: 7501
    • 16a Zöller M, Schuhmacher J, Reed J, Maier-Borst W, Matzku S. J. Nucl. Med. 1992; 33: 1366
    • 16b Schuhmacher J, Klivényi G, Hull WE, Matys R, Hauser H, Kalthoff H, Schmiegel WH, Maier-Borst W, Matzku S. Nucl. Med. Biol. 1992; 19: 809
  • 17 Full name for HBED-CC: 3,3′-[{1,4-bis[(carboxymethyl)amino]-1,4-butanediyl}bis(4-hydroxy-3,1-phenylene)]dipropanoic acid.
    • 18a Trencsényi G, Dénes N, Nagy G, Kis A, Vida A, Farkas F, Szabó JP, Kovács T, Berényi E, Garai I, Bai P, Hunyadi J, Kertész I. J. Pharm. Biomed. Anal. 2017; 139: 54
    • 18b Akhlaghinia B, Makarem A. J. Sulfur Chem. 2011; 32: 575
  • 19 Full name for HBED-NN (ester-protected): di-tert-butyl 2,2′-(ethane-1,2-diylbis{[5-(2-azidoethyl)-2-hydroxybenzyl]azanediyl})diacetate.
  • 20 Full name for HBED-NC (ester-protected): 3-(3-{[{2-[[5-(2-azidoethyl)-2-hydroxybenzyl](2-tert-butoxy-2-oxoethyl)amino]ethyl}(tert-butoxycarbonyl)amino]methyl}-4-hydroxyphenyl)propanoic acid.
    • 21a Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2596
    • 21b Tornøe CW, Christensen C, Meldal M. J. Org. Chem. 2002; 67: 3057
    • 21c Makarem A, Berg R, Rominger F, Straub BF. Angew. Chem. Int. Ed. 2015; 54: 7431
    • 21d Schöffler A, Makarem A, Rominger A, Straub BF. Beilstein J. Org. Chem. 2016; 12: 1566
  • 22 Price EW, Orvig C. Chem. Soc. Rev. 2014; 43: 260
  • 23 Compounds 1, 2, and 4 were prepared by the reported methods.15,16 Characterization data for these compounds, general experimental methods, and all NMR spectra are provided in the Supporting Information.
  • 24 2-{[(2-Aminoethyl)amino]methyl}-4-(2-azidoethyl)phenol (3) To a solution of compound 1 (1.0 g, 5.3 mmol, 1.0 equiv) in CH2Cl2 (5 mL) was added tert-butyl (2-aminoethyl)carbamate (1.0 g, 6.3 mmol, 1.2 equiv). The mixture was stirred for 1 h at r.t. then diluted with CH2Cl2 and washed with 0.5 M aq NaHSO3. The organic phase was dried (Na2SO4), filtered, and concentrated under reduced pressure. The resulting orange solid was dissolved in warm F3CCH2OH (40 mL) at 40–50 °C, then cooled in an ice bath. NaBH4(0.47 g, 12.45 mmol, 2.5 equiv) was added in portions, and the mixture was allowed to warm to r.t. and stirred overnight under an inert atmosphere. The reaction was quenched with H2O (100 mL) and the resulting mixture was extracted with CH2Cl2. The organic layer was dried (Na2SO4), filtered, and concentrated under reduced pressure. The residue was dissolved in a 4 M solution of HCl in 1,4-dioxane (10 mL) and the mixture was stirred for 5 min at r.t. Et2O (40 mL) was added and the mixture was stirred for another 10 min. The precipitate was collected by filtration, washed with Et2O, and dried under vacuum to give salt 3 as white solid; yield: 1.4 g (4.54 mmol, 87%). 1H NMR (400.13 MHz, D2O, 25 °C): δ = 7.29 (m, 2 H, CHCHCCH), 6.98 (d, 3 J H–H = 8.3 Hz, 1 H, CHCHCCH), 4.33 (s, 2 H, BnCH 2 ), 3.56 (t, 3 J H–H = 6.7 Hz, 2 H, CH2CH2 N3), 3.45 (m, 4 H, CH2 CH2 NH), 2.87 (t, 3 J H–H = 6.7 Hz, 2 H, CH2 CH2N3). 13C{1H} NMR (100.61 MHz, D2O, 25 °C): δ = 153.81 (COH), 132.06 (CHCHCCH), 130.92 (CHCHCCH), 116.88 (CCH2N), 115.81 (CHCHCCH), 52.22 (CH2N3), 47.38 (Bn CH2), 43.44 (BnCH2NHCH2), 35.39 (CH2NH2), 33.44 (CH2CH2N3). HRMS (ESI+, MeOH): m/z [M + H]+ calcd for C11H18N5O: 236.1506; found: 236.1539 (100%). (27) Methyl 3-(3-{[(2-{[5-(2-Azidoethyl)-2-hydroxybenzyl]amino}ethyl)amino]methyl}-4-hydroxyphenyl)propanoate (5) Method 1: To a mixture of compound 3 (0.34 g, 1.1 mmol, 1.1 equiv) and aldehyde 2 (0.21 g, 1.0 mmol, 1.9 equiv) in dry MeOH (6 mL) was added anhyd Et3N (420 μL, 1.0 mmol, 3 equiv), and the mixture was stirred at r.t. for 30 min. The volatiles were then completely removed under reduced pressure, and the residue was dissolved in warm F3CCH2OH (8 mL) at 40–50 °C. The resulting solution was cooled in an ice bath and NaBH4 (0.19 g, 5 mmol, 5 equiv) was then added in portions. The mixture was then allowed to warm to r.t. and stirred overnight under an inert atmosphere. The reaction was quenched with H2O (~70 mL), and the mixture was extracted with CH2Cl2. The extracts were dried (Na2SO4), filtered, and concentrated under reduced pressure to give product 5 in quantitative yield. The NMR spectrum of this product showed no significant impurities, and it was therefore used without further purification in the next step. However, for spectroscopic characterization a portion was purified by reverse-phase HPLC to give a colorless solid. Method 2: The same procedure as described in Method 1 was applied to aldehyde 1 (0.19 g, 1.0 mmol, 1 equiv) and salt 4 (0.36 g, 1.1 mmol, 1.1 equiv). Compound 5 was again obtained in quantitative yield. 1H NMR (400.13 MHz, CDCl3, 25 °C): δ = 7.00 (m, 2 H, COHCHCH), 6.79 (m, 4 H, CCHC and COHCHCH), 3.97 (d, 4 H, BnCH 2 ), 3.66 (s, 3 H, CH3 ), 3.44 (t, 3 J H–H = 7.2 Hz, 2 H, CH2CH2 N3), 2.80 (m, 8 H, NH–C2 H4 –NH, CH2 CH2CO2 and CH2 CH2N3), 2.57 (t, 3 J H–H = 8.0 Hz, 2 H, CH2CH2 CO2). 13C{1H} NMR (100.61 MHz, CDCl3, 25 °C): δ = 173.62 (CO2CH3), 156.91 (COH–ArCO2 or COH–ArN3), 156.42 (COH–ArCO2 or COH–ArN3), 131.31 (C–C2H4–CO2), 129.25 (CCHC–C2H4–CO2), 128.99 (CCHC–C2H4–N3), 128.73 (CHCHC–C2H4–CO2), 128.50 (CHCHC–C2H4–N3), 122.36 (CCHC–C2H4–CO2), 122.19 (CCHC–C2H4–N3), 116.76 (CHCHC–C2H4–CO2 or CHCHC–C2H4–N3), 116.56 (CHCHC–C2H4–CO2 or CHCHC–C2H4–N3), 52.82 (CH2 CH2N3), 52.66 (d, Bn CH2), 51.62 (CO2 CH3), 48.02 (d, NHCH2 CH2NH), 36.12 (CH2 CH2CO2), 34.60 (CH2CH2N3), 30.16 (CH2CH2CO2). HRMS (ESI+, MeCN–MeOH): m/z [M + H]+ Calcd for C22H30N5O4: 428.2292; Found: 428.2294 (59%). 3-[3-({[3-[[5-(2-Azidoethyl)-2-hydroxybenzyl](2-tert-butoxy-2-oxoethyl)amino]-1-(tert-butoxycarbonyl)propyl]amino}methyl)-4-hydroxyphenyl]propanoic Acid (HBED-NC) A mixture of compound 5 (0.89 g, 2.03 mmol, 1 equiv), Na2CO3 (0.86 g, 8.13 mmol, 4 equiv), and tert-butyl 2-bromoacetate (630 μL, 4.23 mmol, 2.1 equiv) in anhyd MeCN (40 mL) was stirred under reflux overnight. The mixture was cooled to r.t., filtered, and concentrated under reduced pressure. The residue was dissolved in warm MeOH (30 mL, ~50 °C), and 4 M aq NaOH (10 mL) was slowly added. The resulting mixture was stirred for 2 h then the pH was adjusted to 4–5 with 1 M aq HCl. The crude product was extracted with EtOAc and the extracts were dried (Na2SO4), filtered, and concentrated under reduced pressure. The product was isolated by reverse-phase HPLC as a colorless solid; yield: 0.07 g (0.11 mmol, 5.4%) 1H NMR (400.13 MHz, CDCl3, 25 °C): δ = 7.00 (m, 2 H, COHCHCH), 6.76 (m, 4 H, CCHC, COHCHCH and COHCHCH), 3.69 (s, 2 H, BnCH2 –ArN3), 3.65 (s, 2 H, BnCH2 –ArCO2Me), 3.40 (t, 3 J H–H = 7.2 Hz, 2 H, CH2CH2 N3), 3.14 (d, 4 H, NCH2 -t-BuO2), 2.82 (t, 3 J H–H = 7.6 Hz, 2 H, CH2 CH2CO2H), 2.75 (t, 3 J H–H = 7.2 Hz, 2 H, CH2 CH2N3), 2.65 [br s, 4 H, N(CH2 )2N], 2.59 (t, 3 J H–H = 7.6 Hz, 2 H, CH2CH2 CO2H), 1.44 (d, 18 H, CH3 ). 13C{1H} NMR (100.61 MHz, CDCl3, 25 °C): δ = 176.16 (CO2H), 170.22 (d, CO2 t-Bu), 156.31 (COH–ArCO2 or COH–ArN3), 155.89 (COH–ArCO2 or COH–ArN3), 130.92 (C–C2H4–CO2H), 129.69 (C–C2H4–N3), 129.53 (CCHC–C2H4–CO2H), 129.33 (CCHC–C2H4–N3), 129.05 (CHCHC–C2H4–CO2H), 128.66 (CHCHC–C2H4–N3), 121.80 (CCHC–C2H4–CO2H), 121.67 (CCHC–C2H4–N3), 116.73 (CHCHC–C2H4–CO2H), 116.58 (CHCHC–C2H4–N3), 82.33 [(CO2 CCH3)–ArCO2H], 82.24 [(CO2 CCH3)–ArN3], 58.04 (Bn C), 55.73 [(NCH2CO2)–ArCO2H], 55.60 [(NCH2CO2)–ArN3], 52.84 (CH2 CH2N3), 50.35 (NCH2 CH2N), 36.13 (CH2 CH2CO2H), 34.67 (CH2CH2N3), 29.99 (CH2CH2CO2H), 28.16 (CH3). HRMS (ESI + , MeCN–MeOH): m/z [M + H]+ Calcd for C33H48N5O8 +: 642.3497; Found: 642.3503 (100%).