Synlett 2024; 35(01): 55-83
DOI: 10.1055/s-0042-1751480
account
Functional Dyes

Functionalized Aza-BODIPYs and Their Use in the Synthesis of Aza-BODIPY-Based Complex Systems

Bharti Yadav
,
Mangalampalli Ravikanth
B.Y. thanks IITB for research fellowship. M.R. thanks the Science and Engineering Research Board (SERB), Govt. of India for a research grant (CRG/2020/000088) and J. C Bose for a fellowship.


Abstract

In this account, we present syntheses of various functionalized aza-boron-dipyrromethene dyes (aza-BODIPYs) in which the functional groups are directly introduced at the 2- or 6-positions of the aza-BODIPYs or on aryl rings present at the 1-, 3-, 5-, and 7-positions of the aza-BODIPYs. Some of these functionalized aza-BODIPYs have been used for the synthesis of aza-BODIPY-based energy-transfer cassettes and light-harvesting complexes.

1 Introduction

2 Monofunctionalized Aza-BODIPYs

2.1 2-/6-Monofunctionalized Aza-BODIPYs

2.2 1-/3-/5-/7-Monofunctionalized Aza-BODIPYs

3 Difunctionalized Aza-BODIPYs.

3.1 2,6-Difunctionalized Aza-BODIPYs

3.2 3,5-Difunctionalized Aza-BODIPYs

3.3 1,7-Difunctionalized Aza-BODIPYs

4 Miscellaneous

5 Conclusion



Publication History

Received: 20 March 2023

Accepted after revision: 19 June 2023

Article published online:
17 August 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Dixon HB. F, Cornish-Bowden A, Liebecq C, Loening KL, Moss GP, Reedijk J, Velick SF, Venetianer P, Vliegenthart JF. G. Pure Appl. Chem. 1987; 59: 779
  • 2 Lu H, Mack J, Yang Y, Shen Z. Chem. Soc. Rev. 2014; 43: 4778
  • 3 Brothers PJ. Inorg. Chem. 2011; 50: 12374
  • 4 Musser AJ, Neelakandan PP, Richter JM, Mori H, Friend RH, Nitschke JR. J. Am. Chem. Soc. 2017; 139: 12050
  • 5 Kowada T, Maeda H, Kikuchi K. Chem. Soc. Rev. 2015; 44: 4953
  • 6 Çetindere S. In Photophysics, Photochemical and Substitution Reactions: Recent Advances . Saha S., Kanaparthi R. K., Sodatovic T., Intech Open; London: 2020
  • 7 Swavey S, Quinn J, Coladipietro M, Cox KG, Brennaman MK. RSC Adv. 2017; 7: 173
    • 8a Lakshmi V, Sharma R, Ravikanth M. Rep. Org. Chem. 2016; 6: 1
    • 8b Feng Z, Jiao L, Feng Y, Yu C, Chen N, Wei Y, Mu X, Hao E. J. Org. Chem. 2016; 81: 6281
    • 8c Kukoyi A, He H, Wheeler K. J. Photochem. Photobiol. 2022; 498: 113686
  • 9 Loudet A, Burgess K. Chem. Rev. 2007; 107: 4891
  • 10 Shamova LI, Zatsikha YV, Nemykin VN. Dalton Trans. 2021; 50: 1569
  • 11 Ge Y, O’Shea DF. Chem. Soc. Rev. 2016; 45: 3846
    • 12a Killoran J, Allen L, Gallagher JF, Gallagher WM, O’Shea DF. Chem. Commun. 2002; 1862
    • 12b McDonnell SO, Hall MJ, Allen LT, Byrne A, Gallagher WM, O’Shea DF. J. Am. Chem. Soc. 2005; 127: 16360
    • 12c Bertrand B, Passador K, Goze C, Denat F, Bodio E, Salmain M. Coord. Chem. Rev. 2018; 358: 108
    • 12d Shi Z, Han X, Hu W, Bai H, Peng B, Ji L, Fan Q, Li L, Huang W. Chem. Soc. Rev. 2020; 49: 7533
    • 12e Rana P, Singh N, Majumdar P, Singh SP. Coord. Chem. Rev. 2022; 470: 214698
  • 13 Pliquett J, Dubois A, Racoeur C, Mabrouk N, Amor S, Lescure R, Bettaïeb A, Collin B, Bernhard C, Denat F, Bellaye PS, Paul C, Bodio E, Goze CA. Bioconjugate Chem. 2019; 30: 1061
  • 14 Wagner RW, Lindsey JS. Pure Appl. Chem. 1996; 68: 1373
    • 15a Sathyamoorthi G, Soong M.-L, Ross TW, Boyer JH. Heteroat. Chem. 1993; 4: 603
    • 15b Gorman A, Killoran J, O’Shea C, Kenna T, Gallagher WM, O’Shea DF. J. Am. Chem. Soc. 2004; 126: 10619
  • 16 Bodio E, Goze C. Adv. Inorg. Chem. 2021; 78: 65
  • 17 Bodio E, Goze C. Dyes Pigm. 2019; 160: 700
    • 18a Kumar S, Gobeze HB, Chatterjee T, D’Souza F, Ravikanth M. J. Phys. Chem. A 2015; 119: 8338
    • 18b Madhu S, Kumar S, Chatterjee T, Ravikanth M. New J. Chem. 2014; 38: 5551
    • 19a Zarcone SR, Yarbrough HJ, Neal MJ, Kelly JC, Kaczynski KL, Bloomfield AJ, Bowers GM, Montgomery TD, Chase DT. New. J. Chem. 2022; 46: 4483
    • 19b Yu Z, Zhou J, Ji X, Lin G, Xu S, Dong X, Zhao W. J. Med. Chem. 2020; 63: 9950
  • 20 Koch A, Kumar S, Ravikanth M. Tetrahedron 2017; 73: 1459
  • 21 Gao Y, Pan Y, Chi Y, He Y, Chen H, Nemykin VN. Spectrochim. Acta, Part A 2019; 206: 190
    • 22a Kumar A, Kumar S, Chatterjee T, Ravikanth M. ChemistrySelect 2016; 1: 94
    • 22b Kumar A, Ravikanth M. ChemistrySelect 2017; 2: 9663
    • 23a Jokic T, Borisov SM, Saf R, Nielsen DA, Kühl M, Klimant I. Anal. Chem. 2012; 84: 6723
    • 23b Staudinger C, Breininger J, Klimant I, Borisov SM. Analyst 2019; 144: 2393
    • 24a Koch A, Ravikanth M. J. Org. Chem. 2019; 84: 10775
    • 24b Gut A, Ciejka J, Makuszewski J, Majewska I, Brela M, Łapok Ł. Spectrochim. Acta, Part A 2022; 271: 120898
  • 25 Xu Y, Wang S, Chen Z, Hu R, Zhao Y, Wang K, Qu J, Liu L. Biomaterials 2021; 276: 121017
  • 26 Lucero MY, Tang Y, Zhang CJ, Su S, Forzano JA, Garcia V, Huang X, Moreno D, Chan J. Proc. Natl. Acad. Sci. U. S. A. 2021; 118: e2106943118
  • 27 Parisotto S, Lace B, Artuso E, Lombardi C, Deagostino A, Scudu R, Garino C, Medanab C, Prandi C. Org. Biomol. Chem. 2017; 15: 884
    • 28a Kumar S, Khan TS, Ravikanth M. Tetrahedron 2015; 71: 7608
    • 28b Quartarolo AD, Russo N, Sicilia E. Chem. Eur. J. 2006; 12: 6797
    • 28c Adarsh N, Avirah RR, Ramaiah D. Org. Lett. 2010; 12: 5720
    • 28d Jiang X, Zhang T, Sun C, Meng Y, Xiao L. Chin. Chem. Lett. 2019; 30: 1055
  • 29 Adarsh N, Shanmugasundaram M, Avirah RR, Ramaiah D. Chem. Eur. J. 2012; 18: 12655
  • 30 Gresser R, Hartmann H, Wrackmeyer M, Leo K, Riede M. Tetrahedron 2011; 67: 7148
  • 31 Xu Y, Li C, An J, Ma X, Yang J, Luo L, Deng Y, Kim JS, Sun Y. Sci. China Chem. 2023; 66
  • 32 Yılmaz H, Sevinç G, Hayvalı M. J. Fluoresc. 2021; 31: 151
  • 33 Gao L, Tang S, Zhu L, Sauvé G. Macromolecules 2012; 45: 7404
  • 34 Pascal S, Bellier Q, David S, Bouit P.-A, Chi S.-H, Makarov NS, Le Guennic B, Chibani S, Berginc G, Feneyrou P, Jacquemin D, Perry JW, Maury O, Andraud C. J. Phys. Chem. C 2019; 123: 23661
  • 35 Ma X, Mao X, Zhang S, Huang X, Cheng Y, Zhu C. Polym. Chem. 2013; 4: 520
  • 36 Ding W, Chen S, Du X, Cheng X. J. Mol. Liq. 2022; 363: 119906
  • 37 Sharma R, Maragani R, Misra R. J. Organomet. Chem. 2016; 825: 8
  • 38 Rogers MA. T. J. Chem. Soc. 1943; 590
  • 39 Swamy PC. A, Priyanka RN, Mukherjee S, Thilagar P. Eur. J. Inorg. Chem. 2015; 2338
  • 40 Gayathri T, Rao RS, Gupta V, Singh SP. New J. Chem. 2021; 45: 7792
  • 41 Chen X, Yu B, Wang J, Luo Z, Meng H, Xie B, Zhou R, Liu S, Zhao Q. J. Mater. Chem. C 2023; 11: 2267
    • 42a Bellier Q, Pégaz S, Aronica C, Le Guennic B, Andraud C, Maury O. Org. Lett. 2011; 13: 22
    • 42b Bouit P.-A, Kamada K, Feneyrou P, Berginc G, Toupet L, Maury O, Andraud C. Adv. Mater. (Weinheim, Ger.) 2009; 21: 1151
  • 43 Amin AN, El-Khouly ME, Subbaiyan NK, Zandler ME, Supur M, Fukuzumi S, D’Souza F. J. Phys. Chem. A 2011; 115: 9810
  • 44 El-Khouly ME, Amin AN, Zandler ME, Fukuzumi S, D’Souza F. Chem. Eur. J. 2012; 18: 5239
  • 45 D’Souza F, Amin AN, El-Khouly ME, Subbaiyan NK, Zandler ME, Fukuzumi S. J. Am. Chem. Soc. 2012; 134: 654
  • 46 Mao W, Zhu M, Yan C, Ma Y, Guo Z, Zhu W. ACS Appl. Bio Mater. 2020; 3: 45
  • 47 Tasior M, O’Shea DF. Bioconjugate Chem. 2010; 21: 1130
  • 48 Tasior M, Murtagh J, Frimannsson DO, McDonnell SO, O’Shea DF. Org. Biomol. Chem. 2010; 8: 522
  • 49 Rani K, Pandey UK, Sengupta S. J. Mater. Chem. C 2021; 9: 4607
  • 50 Sheng W, Chang F, Wu Q, Hao E, Jiao L, Wang J.-Y, Pei J. Org. Lett. 2020; 22: 185
  • 51 Lane AM, Luong NT. C, Kelly JC, Neal MJ, Jamrom J, Bloomfield AJ, Lummis PA, Montgomery TD, Chase DT. Molecules 2022; 27: 8256
    • 52a McDonnell SO, O’Shea DF. Org. Lett. 2006; 8: 3493
    • 52b Palma A, Tasior M, Frimannsson DO, Vu TT, Méallet-Renault R, O’Shea DF. Org. Lett. 2009; 11: 3638
    • 52c Palma A, Alvarez LA, Scholz D, Frimannsson DO, Grossi M, Quinn SJ, O’Shea DF. J. Am. Chem. Soc. 2011; 133: 19618
    • 52d Wu D, O’Shea DF. Org. Lett. 2013; 15: 3392
    • 52e Jiao L, Wu Y, Ding Y, Wang S, Zhang P, Yu C, Wei Y, Mu X, Hao E. Chem. Asian J. 2014; 9: 805
    • 52f Wu Y, Cheng C, Jiao L, Yu C, Wang S, Wei Y, Mu X, Hao E. Org. Lett. 2014; 16: 748
    • 52g Jiao L, Wu Y, Wang S, Hu X, Zhang P, Yu C, Cong K, Meng Q, Hao E, Vicente MG. H. J. Org. Chem. 2014; 79: 1830
    • 52h Pino YC, Aguilera JA, García-González V, Alatorre-Meda M, Rodríguez-Velázquez E, Espinoza KA, Frayde-Gómez H, Rivero IA. ACS Omega 2022; 7: 42752
  • 53 Daly HC, Sampedro G, Bon C, Wu D, Ismail G, Cahill RA, O’Shea DF. Eur. J. Med. Chem. 2017; 135: 392
  • 54 Özçelik S, Yurtta AG, Kahveci MU, Sevim AM, Gül A. J. Mol. Struct. 2023; 1271: 134019
  • 55 Shi W.-J, Wei Y.-F, Li C.-F, Sun H, Feng L.-X, Pang S, Liu F, Zheng L, Yan J.-W. Spectrochim. Acta, Part A 2021; 248: 119207
  • 56 Kumar S, Thorat KG, Ravikanth M. J. Org. Chem. 2017; 82: 6568
  • 57 Tachapermpon Y, Thavornpradit S, Charoenpanich A, Sirirak J, Burgess K, Wanichacheva N. Dalton Trans. 2017; 46: 16251
  • 58 Piyanuch P, Patawanich P, Sirirak J, Suwatpipat K, Kamkaew A, Burgess K, Wanichacheva N. J. Hazard. Mater. 2021; 409: 124487
  • 59 Loudet A, Bandichhor R, Wu L, Burgess K. Tetrahedron 2008; 64: 3642
  • 60 Obłoza M, Łapok Ł, Pędziński T, Nowakowska M. Asian J. Org. Chem. 2019; 8: 1879
  • 61 Zhang J, Li Y, Jiang M, Qiu H, Li Y, Gu M, Yin S. ACS Biomater. Sci. Eng. 2023; 9: 821
  • 62 Guo S, Ma L, Zhao J, Kuçukoz B, Karatay A, Hayvalı M, Yaglioglu HG, Elmalib A. Chem. Sci. 2014; 5: 489
  • 63 Zhang D, Liu G, Jiang X.-D. J. Mater. Chem. C 2023; 11: 1668
  • 64 Wang J, Yu C, Hao E, Jiao L. Coord. Chem. Rev. 2022; 470: 214709
  • 65 Jiang X.-D, Xi D, Sun CL, Guan J, He M, Xiao LJ. Tetrahedron Lett. 2018; 59: 546
  • 66 Zhou EY, Knox HJ, Liu C, Zhao W, Chan J. J. Am. Chem. Soc. 2019; 141: 17601
  • 67 Rappitsch T, Borisov SM. Chem. Eur. J. 2021; 27: 10685