Synthesis 2021; 53(12): 2029-2042
DOI: 10.1055/a-1372-6627
short review

Transient- and Native-Directing-Group-Enabled Enantioselective C–H Functionalization

Bing Zu
a   Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. of China
b   School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150080, P. R. of China
,
Yonghong Guo
a   Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. of China
,
Jie Ke
a   Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. of China
,
Chuan He
a   Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. of China
› Author Affiliations
We are grateful for financial support from the Thousand Talents Program for Young Scholars, the Shenzhen Science and Technology Innovation Committee (JCYJ20190809142809370), and the Guangdong Provincial Key Laboratory of Catalysis (2020B121201002).


Abstract

In recent years, transition-metal-catalyzed enantioselective C–H bond functionalization using chiral transient directing groups (cTDGs) or native directing groups (NDGs) has emerged as a powerful and attractive­ synthetic approach to streamline the synthesis of chiral molecules­. This short review focuses on recent advances on imine-based cTDGs strategies and native amine and carboxylic acid directed strategies for the asymmetric functionalization of various C–H bonds. We have endeavored to highlight the great potential of this methodology and hope that this review will inspire further research in this area.

1 Introduction

2 Transient-Directing-Group-Enabled Enantioselective C–H Functionalization

2.1 Generation of Central Chirality

2.2 Generation of Axial Chirality

2.3 Generation of Planar Chirality

3 Native-Directing-Group-Enabled Enantioselective C–H Functionalization

3.1 Native Amines as Directing Groups

3.2 Native Carboxylic Acids as Directing Groups

4 Conclusions and Outlook



Publication History

Received: 12 December 2020

Accepted after revision: 25 January 2021

Accepted Manuscript online:
25 January 2021

Article published online:
15 February 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Handbook of C–H Transformations: Applications in Organic Synthesis, Vol. 2. Dyker G. Wiley-VCH; Weinheim: 2005
    • 1b Engle KM, Yu J.-Q. In Organic Chemistry – Breakthroughs and Perspectives . Ding K, Dai L.-X. Wiley-VCH; Weinheim: 2012: 279
    • 1c Godula K, Sames D. Science 2006; 312: 67
    • 1d Daugulis O, Do H.-Q, Shabashov D. Acc. Chem. Res. 2009; 42: 1074
    • 1e Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010; 110: 624
    • 1f Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
    • 1g Mkhalid IA. I, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem. Rev. 2010; 110: 890
    • 1h Rouquet G, Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11726
    • 1i Park Y, Kim Y, Chang S. Chem. Rev. 2017; 117: 9247
    • 3a Sambiagio C, Schonbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BU. W, Schnurch M. Chem. Soc. Rev. 2018; 47: 6603
    • 3b Chen Z, Wang B, Zhang J, Yu W, Liu Z, Zhang Y. Org. Chem. Front. 2015; 2: 1107
    • 4a Zhao Q, Poisson T, Pannecoucke X, Besset T. Synthesis 2017; 49: 4808
    • 4b Bhattacharya T, Pimparkar S, Maiti D. RSC Adv. 2018; 8: 19456
    • 4c Gandeepan P, Ackermann L. Chem 2018; 4: 199
    • 4d St John-Campbell S, Bull JA. Org. Biomol. Chem. 2018; 16: 4582
    • 4e Niu B, Yang K, Lawrence B, Ge H. ChemSusChem 2019; 12: 2955
    • 4f Wu Y, Shi B. Chin. J. Org. Chem. 2020; 40: 3517
    • 5a Ackermann L. Chem. Rev. 2011; 111: 1315
    • 5b Mo F, Tabor JR, Dong G. Chem. Lett. 2014; 43: 264
    • 5c Huang Z, Lim HN, Mo F, Young MC, Dong G. Chem. Soc. Rev. 2015; 44: 7764
    • 5d Pichette Drapeau M, Gooßen LJ. Chem. Eur. J. 2016; 22: 18654
    • 5e Uttry A, van Gemmeren M. Synlett 2018; 29: 1937
    • 5f He C, Whitehurst WG, Gaunt MJ. Chem 2019; 5: 1031
    • 6a Davies HM. L, Beckwith RE. J. Chem. Rev. 2003; 103: 2861
    • 6b Giri R, Shi B.-F, Engle KM, Maugel N, Yu J.-Q. Chem. Soc. Rev. 2009; 38: 3242
    • 6c Zheng C, You S.-L. RSC Adv. 2014; 4: 6173
    • 6d Newton CG, Wang S.-G, Oliveira CC, Cramer N. Chem. Rev. 2017; 117: 8908
    • 6e Saint-Denis TG, Zhu R.-Y, Chen G, Wu Q.-F, Yu J.-Q. Science 2018; 359: 759
    • 6f Loup J, Dhawa U, Pesciaioli F, Wencel-Delord J, Ackermann L. Angew. Chem. Int. Ed. 2019; 58: 12803
    • 7a Bag D, Verma PK, Sawant SD. Chem. Asian J. 2020; 15: 3225
    • 7b Lapuh MI, Mazeh S, Besset T. ACS Catal. 2020; 10: 12898
    • 7c Liao G, Zhang T, Lin Z.-K, Shi B.-F. Angew. Chem. Int. Ed. 2020; 59: 19773
    • 7d Yang K, Song M, Liu H, Ge H. Chem. Sci. 2020; 11: 12616
  • 8 Zhang F.-L, Hong K, Li T.-J, Park H, Yu J.-Q. Science 2016; 351: 252
  • 9 Park H, Verma P, Hong K, Yu J.-Q. Nat. Chem. 2018; 10: 755
  • 10 Xiao L.-J, Hong K, Luo F, Hu L, Ewing WR, Yeung K.-S, Yu J.-Q. Angew. Chem. Int. Ed. 2020; 59: 9594
  • 11 Li G, Jiang J, Xie H, Wang J. Chem. Eur. J. 2019; 25: 4688
  • 12 Li Z.-Y, Lakmal HH. C, Qian X, Zhu Z, Donnadieu B, McClain SJ, Xu X, Cui X. J. Am. Chem. Soc. 2019; 141: 15730
  • 13 Li G, Liu Q, Vasamsetty L, Guo W, Wang J. Angew. Chem. Int. Ed. 2020; 59: 3475
    • 14a Bringmann G, Mortimer AJ. P, Keller PA, Gresser MJ, Garner J, Breuning M. Angew. Chem. Int. Ed. 2005; 44: 5384
    • 14b Clayden J, Moran WJ, Edwards PJ, LaPlante SR. Angew. Chem. Int. Ed. 2009; 48: 6398
    • 14c Wencel-Delord J, Panossian A, Leroux FR, Colobert F. Chem. Soc. Rev. 2015; 44: 3418
    • 14d Smyth JE, Butler NM, Keller PA. Nat. Prod. Rep. 2015; 32: 1562
  • 15 Yao Q.-J, Zhang S, Zhan B.-B, Shi B.-F. Angew. Chem. Int. Ed. 2017; 56: 6617
  • 16 Dhawa U, Tian C, Wdowik T, Oliveira JC. A, Hao J, Ackermann L. Angew. Chem. Int. Ed. 2020; 59: 13451
  • 17 Liao G, Li B, Chen H.-M, Yao Q.-J, Xia Y.-N, Luo J, Shi B.-F. Angew. Chem. Int. Ed. 2018; 57: 17151
  • 18 Liao G, Yao Q.-J, Zhang Z.-Z, Wu Y.-J, Huang D.-Y, Shi B.-F. Angew. Chem. Int. Ed. 2018; 57: 3661
  • 19 Liao G, Chen H.-M, Xia Y.-N, Li B, Yao Q.-J, Shi B.-F. Angew. Chem. Int. Ed. 2019; 58: 11464
  • 20 Bonne D, Rodriguez J. Chem. Commun. 2017; 53: 12385
    • 21a Chen H.-M, Zhang S, Liao G, Yao Q.-J, Xu X.-T, Zhang K, Shi B.-F. Organometallics 2019; 38: 4022
    • 21b Zhang S, Yao Q.-J, Liao G, Li X, Li H, Chen H.-M, Hong X, Shi B.-F. ACS Catal. 2019; 9: 1956
  • 22 Jin L, Yao Q.-J, Xie P.-P, Li Y, Zhan B.-B, Han Y.-Q, Hong X, Shi B.-F. Chem 2020; 6: 497
  • 23 Song H, Li Y, Yao Q.-J, Jin L, Liu L, Liu Y.-H, Shi B.-F. Angew. Chem. Int. Ed. 2020; 59: 6576
    • 24a Metallocenes . Togni A, Halterman RL. Wiley-VCH; Weinheim: 1998
    • 24b van Staveren DR, Metzler-Nolte N. Chem. Rev. 2004; 104: 5931
  • 25 Chiral Ferrocenes In Asymmetric Catalysis: Synthesis and Applications. Dai L.-X, Hou X.-L. Wiley-VCH; Weinheim: 2010
  • 26 Xu J, Liu Y, Zhang J, Xu X, Jin Z. Chem. Commun. 2018; 54: 689
  • 27 Trowbridge A, Walton SM, Gaunt MJ. Chem. Rev. 2020; 120: 2613
  • 28 Sokolov VI, Troitskaya LL, Reutov OA. J. Organomet. Chem. 1979; 182: 537
    • 29a Shi B.-F, Maugel N, Zhang Y.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2008; 47: 4882
    • 29b Engle KM, Yu J.-Q. J. Org. Chem. 2013; 78: 8927
  • 30 Gao D.-W, Shi Y.-C, Gu Q, Zhao Z.-L, You S.-L. J. Am. Chem. Soc. 2013; 135: 86
  • 31 Gao D.-W, Gu Q, You S.-L. J. Am. Chem. Soc. 2016; 138: 2544
  • 32 Pi C, Li Y, Cui X, Zhang H, Han Y, Wu Y. Chem. Sci. 2013; 4: 2675
  • 33 Zhang H, Cui X, Yao X, Wang H, Zhang J, Wu Y. Org. Lett. 2012; 14: 3012
  • 34 Shi Y.-C, Yang R.-F, Gao D.-W, You S.-L. Beilstein J. Org. Chem. 2013; 9: 1891
  • 35 Pi C, Cui X, Liu X, Guo M, Zhang H, Wu Y. Org. Lett. 2014; 16: 5164
  • 36 Zhan B.-B, Wang L, Luo J, Lin X.-F, Shi B.-F. Angew. Chem. Int. Ed. 2020; 59: 3568
  • 37 Lin L, Fukagawa S, Sekine D, Tomita E, Yoshino T, Matsunaga S. Angew. Chem. Int. Ed. 2018; 57: 12048
  • 38 McNally A, Haffemayer B, Collins BS. L, Gaunt MJ. Nature 2014; 510: 129
  • 39 Smalley AP, Cuthbertson JD, Gaunt MJ. J. Am. Chem. Soc. 2017; 139: 1412
  • 40 He C, Gaunt MJ. Angew. Chem. Int. Ed. 2015; 54: 15840
  • 41 Zhuang Z, Yu J.-Q. J. Am. Chem. Soc. 2020; 142: 12015
  • 42 Shi B.-F, Zhang Y.-H, Lam JK, Wang D.-H, Yu J.-Q. J. Am. Chem. Soc. 2010; 132: 460
  • 43 Wang D.-H, Engle KM, Shi B.-F, Yu J.-Q. Science 2010; 327: 315
  • 44 Cheng X.-F, Li Y, Su Y.-M, Yin F, Wang J.-Y, Sheng J, Vora HU, Wang X.-S, Yu J.-Q. J. Am. Chem. Soc. 2013; 135: 1236
  • 45 Xiao K.-J, Chu L, Yu J.-Q. Angew. Chem. Int. Ed. 2016; 55: 2856
  • 46 Shen P.-X, Hu L, Shao Q, Hong K, Yu J.-Q. J. Am. Chem. Soc. 2018; 140: 6545
  • 47 Hu L, Shen P.-X, Shao Q, Hong K, Qiao JX, Yu J.-Q. Angew. Chem. Int. Ed. 2019; 58: 2134
    • 48a Liu W, Yang W, Zhu J, Guo Y, Wang N, Ke J, Yu P, He C. ACS Catal. 2020; 10: 7207
    • 48b Zhu Y.-C, Li Y, Zhang B.-C, Zhang F.-X, Yang Y.-N, Wang X.-S. Angew. Chem. Int. Ed. 2018; 57: 5129
    • 48c Jang Y.-S, Wozniak L, Pedroni J, Cramer N. Angew. Chem. Int. Ed. 2018; 57: 12901
    • 48d Jang Y.-S, Dieckmann M, Cramer N. Angew. Chem. Int. Ed. 2017; 56: 15088