Synthesis 2021; 53(14): 2319-2341
DOI: 10.1055/a-1396-8343
review

Synthesis of Chiral Amines by C–C Bond Formation with Photoredox Catalysis

Stephen T. J. Cullen
,
Gregory K. Friestad
This work was supported by the National Science Foundation (CHE-1362111), the National Institute of General Medical Sciences (a predoctoral trainee award to S.C., T32 GM067795), and the University of Iowa and the University of Iowa Department of Chemistry.


Abstract

Chiral amines are key substructures of biologically active natural products and drug candidates. The advent of photoredox catalysis has changed the way synthetic chemists think about building these substructures, opening new pathways that were previously unavailable. New developments in this area are reviewed, with an emphasis on C–C bond constructions involving radical intermediates generated through photoredox processes.

1 Introduction

2 Radical–Radical Coupling of α-Amino Radicals

2.1 Radical–Radical Coupling Involving Amine Oxidation

2.2 Radical–Radical Coupling Involving Imine Reduction

2.3 Couplings Involving both Amine Oxidation and Imine Reduction

3 Addition Reactions of α-Amino Radicals

3.1 Conjugate Additions of α-Amino Radicals

3.2 Addition of α-Amino Radicals to Heteroaromatic Systems

3.3 Cross Coupling via Additions to Transition Metal Complexes

4 Radical Addition to C=N Bonds Using Photoredox Catalysis

4.1 Intramolecular Radical Addition to C=N Bonds

4.2 Intermolecular Radical Addition to C=N Bonds

5 Conclusion



Publication History

Received: 18 January 2021

Accepted after revision: 22 February 2021

Accepted Manuscript online:
22 February 2021

Article published online:
31 March 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For reviews, see:
    • 1a Kobayashi S, Ishitani H. Chem. Rev. 1999; 99: 1069
    • 1b Friestad GK, Mathies AK. Tetrahedron 2007; 63: 2541
    • 1c Nugent TC, El-Shazly M. Adv. Synth. Catal. 2010; 352: 753
    • 1d Stereoselective Formation of Amines. In Topics in Current Chemistry, Vol. 343. Li W, Zhang X. Springer; Berlin: 2014

      For seminal examples, see:
    • 2a Miyabe H, Ushiro C, Naito T. Chem. Commun. 1997; 1789
    • 2b Bertrand MP, Coantic S, Feray L, Nouguier R, Perfetti P. Tetrahedron 2000; 56: 3951
    • 2c Friestad GK, Qin J. J. Am. Chem. Soc. 2000; 122: 8329
    • 2d Friestad GK, Shen Y, Ruggles EL. Angew. Chem. Int. Ed. 2003; 42: 5061

      For reviews, see:
    • 3a Friestad GK. Tetrahedron 2001; 57: 5461
    • 3b Miyabe H, Ueda M, Naito T. Synlett 2004; 1140
    • 3c Yamada K, Tomioka K. Chem. Rev. 2008; 108: 2874
    • 3d Miyabe H, Yoshioka E, Kohtani S. Curr. Org. Chem. 2010; 14: 1254
    • 3e Miyabe H. Synlett 2012; 23: 1709
    • 3f Friestad GK. Stereoselective Formation of Amines, In Topics in Current Chemistry, Vol. 343. Li W, Zhang X. Springer; Berlin: 2014: 1-32
  • 4 Romero KJ, Galliher MS, Pratt DA, Stephenson CR. J. Chem. Soc. Rev. 2018; 47: 7851
    • 6a Friestad GK, Deveau AM, Marie J.-C. Org. Lett. 2004; 6: 3249
    • 6b Korapala CS, Qin J, Friestad GK. Org. Lett. 2007; 9: 4246
    • 6c Friestad GK, Ji A, Korapala CS, Qin J. Org. Biomol. Chem. 2011; 4039
    • 6d Friestad GK, Ji A, Baltrusaitis J, Korapala CS, Qin J. J. Org. Chem. 2012; 77: 3159
    • 6e Friestad GK, Banerjee K, Marié J.-C, Mali U, Yao L. J. Antibiot. 2016; 69: 294
    • 6f Li M, Goff L, Friestad GK. Tetrahedron Lett. 2020; 61: 152058

      For selected recent examples, see:
    • 7a Ni S, Garrido-Castro AF, Merchant RR, de Gruyter JN, Schmitt DC, Mousseau JJ, Gallego GM, Yang S, Collins MR, Qiao JX, Yeung K.-S, Langley DR, Poss MA, Scola PM, Qin T, Baran PS. Angew. Chem. Int. Ed. 2018; 57: 14560
    • 7b Matos JL. M, Vásquez-Céspedes S, Gu J, Oguma T, Shenvi RA. J. Am. Chem. Soc. 2018; 140: 16976
    • 7c Wang Y.-Y, Bode JW. J. Am. Chem. Soc. 2019; 141: 9739
    • 8a Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 8b Goddard J.-P, Ollivier C, Fensterbank L. Acc. Chem. Res. 2016; 49: 1924
    • 8c Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 8d Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 8e Sideri IK, Voutyritsa E, Kokotos CG. Org. Biomol. Chem. 2018; 16: 4596
  • 10 Beatty JW, Stephenson CR. J. Acc. Chem. Res. 2015; 48: 1474
  • 11 Leitch JA, Rossolini T, Rogova T, Maitland JA. P, Dixon DJ. ACS Catal. 2020; 10: 2009
    • 12a Ischay MA, Anzovino ME, Du J, Yoon TP. J. Am. Chem. Soc. 2008; 130: 12886
    • 12b Tucker JW, Nguyen JD, Narayanam JM. R, Krabbe SW, Stephenson CR. J. Chem. Commun. 2010; 46: 4985
  • 13 McNally A, Prier CK, MacMillan DW. C. Science 2011; 334: 1114
  • 14 Walker MM, Koronkiewicz B, Chen S, Houk KN, Mayer JM, Ellman JA. J. Am. Chem. Soc. 2020; 142: 8194
  • 15 Ding W, Lu LQ, Liu J, Liu D, Song HT, Xiao WJ. J. Org. Chem. 2016; 81: 7237
  • 16 Wang C, Qin J, Shen X, Riedel R, Harms K, Meggers E. Angew. Chem. Int. Ed. 2016; 55: 685
  • 17 Hager D, MacMillan DW. J. Am. Chem. Soc. 2014; 136: 16986
  • 18 Jeffrey JL, Petronijevic FR, MacMillan DW. J. Am. Chem. Soc. 2015; 137: 8404
  • 19 Zhang HH, Yu S. J. Org. Chem. 2017; 82: 9995
  • 20 Rong J, Seeberger PH, Gilmore K. Org. Lett. 2018; 20: 4081
  • 21 Fava E, Millet A, Nakajima M, Loescher S, Rueping M. Angew. Chem. Int. Ed. 2016; 55: 6776
    • 22a Uraguchi D, Kinoshita N, Kizu T, Ooi T. J. Am. Chem. Soc. 2015; 137: 13768
    • 22b Kizu T, Uraguchi D, Ooi T. J. Org. Chem. 2016; 81: 6953

      For reviews, see:
    • 23a Giese B. Angew. Chem. Int. Ed. 1983; 22: 753
    • 23b Srikanth GS. C, Castle SL. Tetrahedron 2005; 61: 10377
    • 23c Radicals in Organic Synthesis. Renaud P, Sibi MP. Wiley-VCH; Weinheim: 2008
    • 23d Streuff J, Gansaeuer A. Angew. Chem. Int. Ed. 2015; 54: 14232
  • 24 Kohls P, Jadhav D, Pandey G, Reiser O. Org. Lett. 2012; 14: 672
  • 25 Dai X, Cheng D, Guan B, Mao W, Xu X, Li X. J. Org. Chem. 2014; 79: 7212
  • 26 Noble A, MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 11602
    • 27a Fuentes de Arriba AL, Urbitsch F, Dixon DJ. Chem. Commun. 2016; 52: 14434
    • 27b Qi L, Chen Y. Angew. Chem. Int. Ed. 2016; 55: 13312
  • 28 Heitz DR, Rizwan K, Molander GA. J. Org. Chem. 2016; 81: 7308
  • 29 Trowbridge A, Reich D, Gaunt MJ. Nature 2018; 561: 522
  • 30 Ye J, Kalvet I, Schoenebeck F, Rovis T. Nat. Chem. 2018; 10: 1037
  • 31 Aycock RA, Pratt CJ, Jui NT. ACS Catal. 2018; 8: 9115
    • 32a Le Vaillant F, Courant T, Waser J. Angew. Chem. Int. Ed. 2015; 54: 11200
    • 32b Zhou Q.-Q, Guo W, Ding W, Wu X, Chen X, Lu L.-Q, Xiao W.-J. Angew. Chem. Int. Ed. 2015; 54: 11196
  • 33 Kim JY, Lee YS, Choi Y, Ryu DH. ACS Catal. 2020; 10: 10585
    • 34a Minisci F, Galli R, Cecere M, Malatesta V, Caronna T. Tetrahedron Lett. 1968; 9: 5609
    • 34b Minisci F. Synthesis 1973; 1
    • 35a Tauber J, Imbri D, Opatz T. Molecules 2014; 19: 16190
    • 35b Proctor RS. J, Phipps RJ. Angew. Chem. Int. Ed. 2019; 58: 13666
  • 36 Zhang Y, Teuscher KB, Ji H. Chem. Sci. 2016; 7: 2111
  • 37 Quattrini MC, Fujii S, Yamada K, Fukuyama T, Ravelli D, Fagnoni M, Ryu I. Chem. Commun. 2017; 53: 2335
  • 38 Cowden CJ. Org. Lett. 2003; 5: 4497
  • 39 Garza-Sanchez RA, Tlahuext-Aca A, Tavakoli G, Glorius F. ACS Catal. 2017; 7: 4057
  • 40 Dong J, Xia Q, Lv X, Yan C, Song H, Liu Y, Wang Q. Org. Lett. 2018; 20: 5661
  • 41 Grainger R, Heightman TD, Ley SV, Lima F, Johnson CN. Chem. Sci. 2019; 10: 2264
    • 42a Cheng W.-M, Shang R, Fu Y. ACS Catal. 2017; 7: 907
    • 42b Cheng W.-M, Shang R, Fu M.-C, Fu Y. Chem. Eur. J. 2017; 23: 2537
  • 43 Proctor RS. J, Davis HJ, Phipps RJ. Science 2018; 360: 419
  • 44 Zheng D, Studer A. Angew. Chem. Int. Ed. 2019; 58: 15803
  • 46 Zhang G, Zhou S, Fu L, Chen P, Li Y, Zou J, Liu G. Angew. Chem. Int. Ed. 2020; 59: 20439
  • 47 Shen Y, Shen M.-L, Wang P.-S. ACS Catal. 2020; 10: 8247
    • 48a Ruiz-Castillo P, Buchwald SL. Chem. Rev. 2016; 116: 12564
    • 48b Maluenda I, Navarro O. Molecules 2015; 20: 7528
    • 48c de Meijere A, Diederich F. Metal-Catalyzed Cross-Coupling Reactions, Vols. 1 and 2. Wiley-VCH; Weinheim: 2004
  • 49 Seechurn CC. C. J, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
  • 50 Nicolaou KC, Bulger PG, Sarlah D. Angew. Chem. Int. Ed. 2005; 44: 4442
  • 51 Hazari N, Melvin PR, Beromi MM. Nat. Rev. Chem. 2017; 1: 25
    • 52a Frisch AC, Beller M. Angew. Chem. Int. Ed. 2005; 44: 674
    • 52b Rudolph A, Lautens M. Angew. Chem. Int. Ed. 2009; 48: 2656
  • 53 Kalyani D, McMurtrey KB, Neufeldt SR, Sanford MS. J. Am. Chem. Soc. 2011; 133: 18566
    • 54a Marzo L, Pagire SK, Reiser O, Koenig B. Angew. Chem. Int. Ed. 2018; 57: 10034
    • 54b Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 55a Tellis JC, Primer DN, Molander GA. Science 2014; 345: 433
    • 55b Zuo Z, Ahneman DT, Chu L, Terrett JA, Doyle AG, MacMillan DW. C. Science 2014; 345: 437
  • 56 Joe CL, Doyle AG. Angew. Chem. Int. Ed. 2016; 55: 4040
  • 57 Luo J, Zhang J. ACS Catal. 2016; 6: 873
  • 58 Zuo Z, Cong H, Li W, Choi J, Fu GC, MacMillan DW. J. Am. Chem. Soc. 2016; 138: 1832
  • 59 Thullen SM, Rovis T. J. Am. Chem. Soc. 2017; 139: 15504
  • 60 Zheng J, Breit B. Angew. Chem. Int. Ed. 2019; 58: 3392

    • For allylation, see:
    • 61a Xuan J, Zeng T.-T, Feng Z.-J, Deng Q.-H, Chen J.-R, Lu L.-Q, Xiao W.-J, Alper H. Angew. Chem. Int. Ed. 2015; 54: 1625
    • 61b Lang SB, O’Nele KM, Douglas JT, Tunge JA. Chem. Eur. J. 2015; 21: 18589

    • For alkynylation, see:
    • 61c Zhang H, Zhang P, Jiang M, Yang H, Fu H. Org. Lett. 2017; 19: 1016
    • 62a Corey EJ, Pyne SG. Tetrahedron Lett. 1983; 24: 2821
    • 62b Bartlett PA, McLaren KL, Ting PC. J. Am. Chem. Soc. 1988; 110: 1633
  • 63 Parker KA, Spero DM, Van Epp J. J. Org. Chem. 1988; 53: 4628
  • 64 Hart DJ, Seely FL. J. Am. Chem. Soc. 1988; 110: 1631
  • 65 See ref. 3f.
  • 66 Miyabe H, Ushiro C, Ueda M, Yamakawa K, Naito T. J. Org. Chem. 2000; 65: 176
    • 67a Bertrand MP, Feray L, Nouguier R, Perfetti P. Synlett 1999; 1148
    • 67b Bertrand MP, Feray L, Nouguier R, Stella L. Synlett 1998; 780
  • 68 See refs 2c,d and 5a,b.
  • 69 For examples, see refs 6d,e.
  • 70 Rono LJ, Yayla HG, Wang DY, Armstrong MF, Knowles RR. J. Am. Chem. Soc. 2013; 135: 17735
  • 71 Zhao Y, Chen J.-R, Xiao W.-J. Org. Lett. 2016; 18: 6304
  • 72 Cavanaugh CL, Nicewicz DA. Org. Lett. 2015; 17: 6082
  • 73 Luescher MU, Geoghegan K, Nichols PL, Bode JW. Aldrichimica Acta 2015; 48: 43
  • 74 Hsieh SY, Bode JW. Org. Lett. 2016; 18: 2098
  • 75 Hsieh SY, Bode JW. ACS Cent. Sci. 2017; 3: 66
  • 76 Jindakun C, Hsieh S.-Y, Bode JW. Org. Lett. 2018; 20: 2071
  • 77 See ref. 3.
  • 78 Patel NR, Kelly CB, Siegenfeld AP, Molander GA. ACS Catal. 2017; 7: 1766
  • 79 Corcé V, Chamoreau L.-M, Derat E, Goddard J.-P, Ollivier C, Fensterbank L. Angew. Chem. Int. Ed. 2015; 54: 11414
  • 80 Matsui JK, Lang SB, Heitz DR, Molander GA. ACS Catal. 2017; 7: 2563
  • 81 Pantaine LR. E, Milligan JA, Matsui JK, Kelly CB, Molander GA. Org. Lett. 2019; 21: 2317
  • 82 Slater KA, Friestad GK. J. Org. Chem. 2015; 80: 6432
  • 83 Plasko DP, Jordan CJ, Ciesa BE, Merrill MA, Hanna JM. Photochem. Photobiol. Sci. 2018; 17: 534
  • 84 Yi J, Badir SO, Alam R, Molander GA. Org. Lett. 2019; 21: 4853
  • 85 Cullen ST. J, Friestad GK. Org. Lett. 2019; 21: 8290
  • 86 Ding H, Friestad GK. Org. Lett. 2004; 6: 637
  • 87 Wang JC, Shao ZY, Tan K, Tang R, Zhou QL, Xu M, Li YM, Shen Y. J. Org. Chem. 2020; 85: 9944
  • 88 Jia J, Lefebvre Q, Rueping M. Org. Chem. Front. 2020; 7: 602
  • 89 Sharma S, Sharma A. Org. Biomol. Chem. 2019; 17: 4384
  • 90 Weigel WK. III, Dang HT, Yang H.-B, Martin DB. C. Chem. Commun. 2020; 56: 9699
  • 91 Amador AG, Sherbrook EM, Yoon TP. Asian J. Org. Chem. 2019; 8: 978
  • 92 Garrido-Castro AF, Choubane H, Daaou M, Maestro MC, Alemán J. Chem. Commun. 2017; 53: 7764
  • 93 Li Y, Zhou K, Wen Z, Cao S, Shen X, Lei M, Gong L. J. Am. Chem. Soc. 2018; 140: 15850
  • 94 See ref. 2d.
  • 95 Han B, Li Y, Yu Y, Gong L. Nat. Commun. 2019; 10: 3804