CC BY-NC-ND 4.0 · Synlett 2021; 32(11): 1053-1059
DOI: 10.1055/a-1437-8202
synpacts

Structure, Bonding, and Photoaffinity Labeling Applications of Dialkyldiazirines

,
Support was provided by Caltech start-up funds for A.E.O. and a John Stauffer Charitable Trust SURF Fellowship for T.Z.


Abstract

Dialkyldiazirine photoaffinity probes are unparalleled tools for the study of small molecule–protein interactions. Here we summarize the basic principles of structure, bonding, and photoreactivity of dialkyldiazirines, current methods for their synthesis, and their practical application in photoaffinity labeling experiments. We demonstrate the unique utility of dialkyldiazirine probes in the context of our recent photoaffinity crosslinking-mass spectrometry analysis to reveal a hidden cholesterol binding site in the Hedgehog morphogen proteins.

1 Introduction

2 Structure, Bonding, and Spectral Properties

3 Photoreactivity

4 Synthesis

5 Application in Photoaffinity Labeling

6 Discovery of a Cholesterol–Hedgehog Protein Interface

7 Conclusions and Outlook



Publication History

Received: 28 February 2021

Accepted after revision: 15 March 2021

Accepted Manuscript online:
15 March 2021

Article published online:
09 April 2021

© 2021. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Bayley H, Knowles JR. Methods Enzymol. 1977; 46: 69
  • 2 Chowdhry V, Westheimer FH. Annu. Rev. Biochem. 1979; 48: 293
  • 3 Halloran MW, Lumb J. Chem. Eur. J. 2019; 25: 4885
  • 4 Dubinsky L, Krom BP, Meijler MM. Bioorg. Med. Chem. 2012; 20: 554
  • 5 Blencowe A, Hayes W. Soft Matter 2005; 1: 178
  • 6 Brunner J, Senn H, Richards FM. J. Biol. Chem. 1980; 255: 3313
  • 7 Das J. Chem. Rev. 2011; 111: 4405
  • 8 Hill JR, Robertson AA. B. J. Med. Chem. 2018; 16: 6945
  • 9 Purohit R, Peng DS, Vielmas E, Ondrus AE. Commun. Biol. 2020; 3: 250
  • 10 Mafi A, Purohit R, Vielmas E, Lauinger AR, Lam B, Cheng Y.-S, Zhang T, Huang Y, Kim S.-K, Goddard WA, Ondrus AE. PLOS One 2021; e0246814
  • 11 Paulsen SR. Angew. Chem. 1960; 72: 781
  • 12 Schmitz E, Ohme R. Chem. Ber. 1961; 94: 2166
  • 13 Pierce L, Dobyns SV. J. Am. Chem. Soc. 1962; 84: 2651
  • 14 Verma UP, Möller K, Vogt J, Winnewisser M, Christiansen JJ. Can. J. Phys. 1985; 63: 1173
  • 15 Puzzarini C, Gambi A, Cazzoli G. J. Mol. Struct. 2004; 695: 203
  • 16 Wollrab JE, Scharpen LH, Ames DP, Merritt JA. J. Chem. Phys. 1968; 49: 2405
  • 17 Barton DH. R, Jaszberenyi JC, Theodorakis EA, Reibenspies JH. J. Am. Chem. Soc. 1993; 115: 8050
  • 18 Kochanski E, Lehn JM. Theor. Chim. Acta 1969; 14: 281
  • 19 Liang C, Allen LC. J. Am. Chem. Soc. 1991; 113: 1878
  • 20 Han MS, Cho H.-G, Cheong B.-S. Bull. Korean Chem. Soc. 1999; 20: 1281
  • 21 Merritt JA. Can. J. Phys. 1962; 40: 1683
  • 22 Robertson LC, Merritt JA. J. Chem. Phys. 1972; 56: 2919
  • 23 Modarelli DA, Morgan S, Platz MS. J. Am. Chem. Soc. 1992; 114: 7034
  • 24 Liu MT. H. Chem. Soc. Rev. 1982; 11: 127
  • 25 Yamamoto N, Bernardi F, Bottoni A, Olivucci M, Robb MA, Wilsey S. J. Am. Chem. Soc. 1994; 116: 2064
  • 26 Heine HW, Zimmer R. In Chemistry of Heterocyclic Compounds, Vol. 42(2). Hassner A. John Wiley & Sons; Weinheim: 1983: 547
  • 27 Winnewisser M, Möller K, Gambi A. In Chemistry of Diazirines, Vol. 1. Liu MT. CRC Press; Boca Raton: 1987: 19
  • 28 Frey HM, Stevens ID. R. J. Chem. Soc. 1965; 1700
  • 29 Amrich MJ, Bell JA. J. Am. Chem. Soc. 1964; 86: 292
  • 30 Hoffmann R. Tetrahedron 1966; 22: 539
  • 31 Frey HM. Adv. Photochem. 1966; 225
  • 32 Avila MJ, Figuera JM, Menéndez V, Pérez JM. J. Chem. Soc., Faraday Trans. 1 1976; 72: 422
  • 33 Bigot B, Ponec R, Sevin A, Devaquet A. J. Am. Chem. Soc. 1978; 100: 6575
  • 34 Mueller-Remmers PL, Jug K. J. Am. Chem. Soc. 1985; 107: 7275
  • 35 Modarelli DA, Platz MS. J. Am. Chem. Soc. 1993; 115: 470
  • 36 Fedorov I, Koziol L, Mollner AK, Krylov AI, Reisler H. J. Phys. Chem. 2009; 113: 7412
  • 37 Mansoor AM, Stevens ID. R. Tetrahedron Lett. 1966; 1733
  • 38 Stevens ID. R, Liu MT. H, Soundararajan N, Paike N. Tetrahedron Lett. 1989; 30: 481
  • 39 Ford F, Yuzawa T, Platz MS, Matzinger S, Fülscher M. J. Am. Chem. Soc. 1998; 120: 4430
  • 40 Seburg RA, McMahon RJ. J. Am. Chem. Soc. 1992; 114: 7183
  • 41 Bernardi F, Olivucci M, Robb MA, Vreven T, Soto J. J. Org. Chem. 2000; 65: 7847
  • 42 Jones MB, Platz MS. J. Org. Chem. 1991; 56: 1694
  • 43 Korneev SM. Eur. J. Org. Chem. 2011; 6153
  • 44 Perez JM. J. Chem. Soc., Faraday Trans. 1 1982; 78: 3509
  • 45 Bonneau R, Liu MT. H. J. Am. Chem. Soc. 1996; 118: 7229
  • 46 Akasaka T, Liu MT. H, Niino Y, Maeda Y, Wakahara T, Okamura M, Kobayashi K, Nagase S. J. Am. Chem. Soc. 2000; 122: 7134
  • 47 Arenas JF, López-Tocón I, Otero JC, Soto J. J. Am. Chem. Soc. 2002; 124: 1728
  • 48 Iacobucci C, Goetze M, Piotrowski C, Arlt C, Rehkamp A, Ihling CH, Hage C, Sinz A. Anal. Chem. 2018; 90: 2805
  • 49 Procacci B, Roy SS, Norcott P, Turner N, Duckett SB. J. Am. Chem. Soc. 2018; 140: 16855
  • 50 O’Brien JG. K, Jemas A, Asare-Okai PN, am Ende CW, Fox JM. Org. Lett. 2020; 22: 9415
  • 51 Wang J, Burdzinski G, Gustafson TL, Platz MS. J. Am. Chem. Soc. 2007; 129: 2597
  • 52 Ziemianowicz DS, Bomgarden R, Etienne C, Schriemer DC. J. Am. Soc. Mass Spectrom. 2017; 28: 2011
  • 53 West A, Muncipinto G, Wu H.-Y, Huang A, Labenski MT, Woo C. ChemRxiv 2020; preprint DOI: 10.26434/chemrxiv.13373249.v1.
  • 54 Bunker PR, Jensen P, Kraemer WP, Beardsworth R. J. Chem. Phys. 1986; 85: 3724
  • 55 Irikura KK, Goddard WA, Beauchamp JL. J. Am. Chem. Soc. 1992; 114: 48
  • 56 Modarelli DA, Platz MS. J. Am. Chem. Soc. 1991; 113: 8985
  • 57 Gallo MM, Schaefer HF. J. Phys. Chem. 1992; 96: 1515
  • 58 Khodabandeh S, Carter EA. J. Phys. Chem. 1993; 97: 4360
  • 59 Matzinger S, Fuelscher MP. J. Phys. Chem. 1995; 99: 10747
  • 60 Admasu A, Gudmundsdóttir AD, Platz MS, Watt DS, Kwiatkowski S, Crocker PJ. J. Chem. Soc., Perkin Trans. 2 1998; 1093
  • 61 Griller D, Liu MT. H, Scaiano JC. J. Am. Chem. Soc. 1982; 104: 5549
  • 62 Wang L, Tachrim ZP, Kurokawa N, Ohashi F, Sakihama Y, Hashidoko Y, Hashimoto M. Molecules 2017; 22: 1389
  • 63 Wang L, Ishida A, Hashidoko Y, Hashimoto M. Angew. Chem. Int. Ed. 2017; 56: 870
  • 64 Church RF. R, Weiss MJ. J. Org. Chem. 1970; 35: 2465
  • 65 Dubinsky L, Jarosz LM, Amara N, Krief P, Kravchenko VV, Krom BP, Meijler MM. Chem. Commun. 2009; 7378
  • 66 Husain SS, Forman SA, Kloczewiak MA, Addona GH, Olsen RW, Pratt MB, Cohen JB, Miller KW. J. Med. Chem. 1999; 42: 3300
  • 67 Li Z, Hao P, Li L, Tan CY. J, Cheng X, Chen GY. J, Sze SK, Shen H, Yao SQ. Angew. Chem. Int. Ed. 2013; 52: 8551
  • 68 Walko M, Hewitt E, Radford SE, Wilson AJ. RSC Adv. 2019; 9: 7610
  • 69 Horne JE, Walko M, Calabrese AN, Levenstein MA, Brockwell DJ, Kapur N, Wilson AJ, Radford SE. Angew. Chem. Int. Ed. 2018; 57: 16688
  • 70 McCutcheon DC, Lee G, Carlos A, Montgomery JE, Moellering RE. J. Am. Chem. Soc. 2019; 142: 146
  • 71 Ahad AM, Jensen SM, Jewett JC. Org. Lett. 2013; 15: 5060
  • 72 Wu B, Jayakar SS, Zhou X, Titterton K, Chiara DC, Szabo AL, Savechenkov PY, Kent DE, Cohen JB, Forman SA, Miller KW, Bruzik KS. Euro. J. Med. Chem. 2018; 136: 344
  • 73 Al-Omari M, Banert K, Hagedorn M. Angew. Chem. Int. Ed. 2005; 45: 309
  • 74 Wagner G, Knoll W, Bobek MM, Brecker L, van Herwijnen HW. G, Brinker UH. Org. Lett. 2010; 12: 332
  • 75 Cheng WW. L, Chen Z.-W, Bracamontes JR, Budelier MM, Krishnan K, Shin DJ, Wang C, Jiang X, Covey DF, Akk G, Evers AS. J. Biol. Chem. 2018; 293: 3013
  • 76 Wallace RG. Aldrichimica Acta 1980; 3: 3
  • 77 Flaxman HA, Chang C.-F, Wu H.-Y, Nakamoto CH, Woo CM. J. Am. Chem. Soc. 2019; 141: 11759
  • 78 MacKinnon AL, Taunton J. Curr. Protoc. Chem. Biol. 2009; 1: 55
  • 79 Wu F, Zhang Y, Sun B, McMahon AP, Wang Y. Cell Chem. Biol. 2017; 24: 252
  • 80 Hall TM. T, Porter JA, Young KE, Koonin EV, Beachy PA, Leahy DJ. Cell 1997; 91: 85
  • 81 Becke AD. Phys. Rev. A: At., Mol., Opt. Phys. 1988; 38: 3098
  • 82 Becke AD. J. Chem. Phys. 1993; 98: 5648
  • 83 Vosko SH, Wilk L, Nusair M. Can. J. Phys. 1980; 58: 1200
  • 84 Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ. J. Phys. Chem. 1994; 98: 11623
  • 85 Frisch MJ, Pople JA, Binkley JS. J. Chem. Phys. 1984; 80: 3265
  • 86 Linden A, Vasella A, Witzig C. Helv. Chim. Acta 1992; 75: 1572
  • 87 Knoll W, Bobek MM, Giester G, Brinker UH. Tetrahedron Lett. 2001; 42: 9161
  • 88 Bobek MM, Krois D, Brehmer TH, Giester G, Wiberg KB, Brinker UH. J. Org. Chem. 2003; 68: 2129
  • 89 Dequirez G, Pons V, Dauban P. Angew. Chem. Int. Ed. 2012; 51: 7384