Synthesis 2021; 53(16): 2777-2786
DOI: 10.1055/a-1472-7999
short review

Assisted by Hydrogen-Bond Donors: Cinchona Quaternary Salts as Privileged Chiral Catalysts for Phase-Transfer Reactions

Maciej Majdecki
,
,
Agata Tyszka-Gumkowska
,
Janusz Jurczak
We would like to acknowledge Narodowe Centrum Nauki (National Science Centre, Poland; Project 2016/21/B/ST5/03352) for financial support.


Abstract

This short review is devoted to asymmetric phase-transfer reactions that employ hybrid ammonium Cinchona catalysts supported by possessing hydrogen-bond donor groups. We present recent advances utilizing this type of catalyst in the field of biphasic reaction systems. The main emphasis is placed on the advantages of additional functional groups present in the structure of the catalyst, such as hydroxy, amide, (thio)urea or squaramide.

1 Introduction

2 Phase-Transfer Hybrid Cinchona Catalysts with a Free Hydroxy Group

3 (Thio)urea Hybrid Cinchona Catalysts

4 Hybrid Amide-Based Catalysts Bearing a Cinchona Scaffold

5 Conclusions



Publication History

Received: 02 March 2021

Accepted after revision: 01 April 2021

Accepted Manuscript online:
01 April 2021

Article published online:
19 April 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Mąkosza M. Tetrahedron Lett. 1969; 10: 673
  • 2 Mąkosza M, Wawrzyniewicz M. Tetrahedron Lett. 1969; 10: 4659
  • 3 Maruoka K. Chem. Rec. 2010; 10: 254
  • 4 Jew S, Park H. Chem. Commun. 2009; 7090
  • 5 O’Donnell MJ. Acc. Chem. Res. 2004; 37: 506
  • 6 Ooi T, Maruoka K. Angew. Chem. Int. Ed. 2007; 46: 4222
  • 7 Shirakawa S, Maruoka K. Angew. Chem. Int. Ed. 2013; 52: 4312
  • 8 Dehmlow EV, Dehmlow SS. Phase Transfer Catalysis, 3rd ed. Wiley-VCH; Weinheim: 1993
  • 9 Starks CM, Liotta CL, Halpern M. Phase-Transfer Catalysis: Fundamentals, Applications and Industrial Perspectives. Chapman & Hall; New York: 1994
  • 10 Asymmetric Catalysis on Industrial Scale: Challenges, Approaches and Solutions. Blaser HU, Federsel H.-J. Wiley-VCH; Weinheim: 2011
  • 11 Dolling UH, Davis P, Grabowski EJ. J. J. Am. Chem. Soc. 1984; 106: 446
  • 12 Helder R, Hummelen JC, Laane RW. P. M, Wiering JS, Wynberg H. Tetrahedron Lett. 1976; 17: 1831
  • 13 Palomo C, Oiarbide M, Laso A, López R. J. Am. Chem. Soc. 2005; 127: 17622
  • 14 Gomez-Bengoa E, Linden A, Lopez R, Múgica-Mendiola I, Oiarbide M, Palomo C. J. Am. Chem. Soc. 2008; 130: 7955
  • 15 Fini F, Sgarzani V, Pettersen D, Herrera RP, Bernardi L, Ricci A. Angew. Chem. 2005; 117: 8189
  • 16 Juliá S, Ginebreda A. Tetrahedron Lett. 1979; 20: 2171
  • 17 Liu Y, Provencher BA, Bartelson KJ, Deng L. Chem. Sci. 2011; 2: 1301
  • 18 Díez-Barra E, de la Hoz A, Merino S, Rodríguez A, Sánchez-Verdú P. Tetrahedron 1998; 54: 1835
  • 19 Lygo B, Crosby J, Lowdon TR, Peterson JA, Wainwright PG. Tetrahedron 2001; 57: 2403
  • 20 Kawai H, Okusu S, Yuan Z, Tokunaga E, Yamano A, Shiro M, Shibata N. Angew. Chem. Int. Ed. 2013; 52: 2221
  • 21 Herchl R, Waser M. Tetrahedron Lett. 2013; 54: 2472
  • 22 Fiandra CD, Piras L, Fini F, Disetti P, Moccia M, Adamo MF. A. Chem. Commun. 2012; 48: 3863
  • 23 Novacek J, Waser M. Eur. J. Org. Chem. 2013; 637
  • 24 Bernal P, Fernández R, Lassaletta JM. Chem. Eur. J. 2010; 16: 7714
  • 25 Schörgenhumer J, Otte S, Haider V, Novacek J, Waser M. Tetrahedron 2020; 76: 130816
  • 26 Johnson KM, Rattley MS, Sladojevich F, Barber DM, Nuñez MG, Goldys AM, Dixon DJ. Org. Lett. 2012; 14: 2492
  • 27 Lu N, Fang Y, Gao Y, Wei Z, Cao J, Liang D, Lin Y, Duan H. J. Org. Chem. 2018; 83: 1486
  • 28 Wang B, Xu T, Zhu L, Lan Y, Wang J, Lu N, Wei Z, Lin Y, Duan H. Org. Chem. Front. 2017; 4: 1266
  • 29 Li M, Woods PA, Smith MD. Chem. Sci. 2013; 4: 2907
  • 30 Mąkosza M, Fedoryński M. Catalysts 2020; 10: 1436
  • 31 Woodward RB, Hoffmann R. J. Am. Chem. Soc. 1965; 87: 395
  • 32 Baldwin JE, Thomas RC, Kruse LI, Silberman L. J. Org. Chem. 1977; 42: 3846
  • 33 Wang J, Liu Y, Wei Z, Cao J, Liang D, Lin Y, Duan H. J. Org. Chem. 2020; 85: 4047
  • 34 Craig R, Sorrentino E, Connon SJ. Chem. Eur. J. 2018; 24: 4528
  • 35 Sorrentino E, Connon SJ. Org. Lett. 2016; 18: 5204
  • 36 Pupo G, Ibba F, Ascough DM. H, Vicini AC, Ricci P, Christensen KE, Pfeifer L, Morphy JR, Brown JM, Paton RS, Gouverneur V. Science 2018; 360: 638
  • 37 Craig R, Litvajova M, Cronin SA, Connon SJ. Chem. Commun. 2018; 54: 10108
  • 38 Wang B, He Y, Fu X, Wei Z, Lin Y, Duan H. Synlett 2015; 26: 2588
  • 39 Perillo M, Di Mola A, Filosa R, Palombi L, Massa A. RSC Adv. 2014; 4: 4239
  • 40 Genoni A, Benaglia M, Mattiolo E, Rossi S, Raimondi L, Barrulas PC, Burke AJ. Tetrahedron Lett. 2015; 56: 5752
  • 41 Majdecki M, Niedbała P, Jurczak J. Org. Lett. 2019; 21: 8085
  • 42 Majdecki M, Niedbała P, Jurczak J. ChemistrySelect 2020; 5: 6424
  • 43 Majdecki M, Tyszka-Gumkowska A, Jurczak J. Org. Lett. 2020; 22: 8687
  • 44 Majdecki M, Grodek P, Jurczak J. J. Org. Chem. 2021; 86: 995
  • 45 Jarrouse J. C. R. Acad. Sci., Ser. C, 1951; 232: 1424