Synthesis 2021; 53(18): 3227-3234
DOI: 10.1055/a-1478-6118
special topic
Bond Activation – in Honor of Prof. Shinji Murai

Recent Advances in Heterogeneous Ir Complex Catalysts for Aromatic C–H Borylation

Kyogo Maeda
a   Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8502, Japan
,
Ken Motokura
a   Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8502, Japan
b   Department of Chemistry and Biotechnology, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
› Author Affiliations
A part of this study was supported by Japan Society for the Promotion of Science (KAKENHI) for Scientific Research on Innovative Areas (Grant Nos. JP18H04242 and JP20H04804). A part of this study was supported by a PRESTO Grant (No. JPMJPR17SA) by JST.


Abstract

Aromatic C–H borylation catalyzed by an Ir complex is among the most powerful methods for activating inert bonds. The products, i.e., arylboronic acids and their esters, are usable chemicals for the Suzuki–Miyaura cross-coupling reaction, and significant effort has been directed toward the development of homogeneous catalysis chemistry. In this short review, we present a recent overview of current heterogeneous Ir-complex catalyst developments for aromatic C–H borylation. Not only have Ir complexes been immobilized on support surfaces with phosphine and bipyridine ligands, but Ir complexes incorporated within solid materials have also been developed as highly active and reusable heterogeneous Ir catalysts. Their catalytic activities and stabilities strongly depend on their surface structures, including linker length and ligand structure.

1 Introduction and Homogeneous Ir Catalysis

2 Heterogeneous Ir Complex Catalysts for C–H Borylation Reactions

3 Other Heterogeneous Metal Complex Catalysts for C–H Borylation Reactions

4 Summary and Outlook



Publication History

Received: 15 March 2021

Accepted after revision: 09 April 2021

Accepted Manuscript online:
09 April 2021

Article published online:
04 May 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Xu L, Wang G, Zhang S, Wang H, Wang L, Liu L, Jiao J, Li P. Tetrahedron 2017; 73: 7123
  • 3 Yamaguchi J, Yamaguchi AD, Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
  • 4 Kotha S, Lahiri K, Kashinath D. Tetrahedron 2002; 58: 9633
    • 5a Iverson CN, Smith MR. III. J. Am. Chem. Soc. 1999; 121: 7696
    • 5b Cho J.-Y, Tse MK, Holmes D, Maleczka RE. Jr, Smith MR. III. Science 2002; 295: 305
    • 6a Press LP, Kosanovich AJ, McCulloch BJ, Ozerov OV. J. Am. Chem. Soc. 2016; 138: 9487
    • 6b Bheeter CB, Chowdhury AD, Adam R, Jackstell R, Beller M. Org. Biomol. Chem. 2015; 13: 10336
    • 6c Davis HJ, Mihai MT, Phipps RJ. J. Am. Chem. Soc. 2016; 138: 12759
    • 6d Yan G, Jian Y, Kuang C, Wang S, Liu H, Zhang Y, Wang J. Chem. Commun. 2010; 46: 3170
  • 7 Ishiyama T, Takagi J, Ishida K, Miyaura N, Natia RA, Hartwig JF. J. Am. Chem. Soc. 2002; 124: 390
  • 8 Boller TM, Murphy JM, Hapke M, Ishiyama T, Miyaura N, Hartwig JF. J. Am. Chem. Soc. 2005; 127: 14263
  • 9 Ishiyama T, Takagi J, Hartwig JF, Miyaura N. Angew. Chem. Int. Ed. 2002; 41: 3056
  • 10 Oeschger RJ, Larsen MA, Bismuto A, Hartwig JF. J. Am. Chem. Soc. 2019; 141: 16479
  • 11 Larsen MA, Hartwig JF. J. Am. Chem. Soc. 2014; 136: 4287
  • 12 Kawamorita S, Ohmiya H, Hara K, Fukuoka A, Sawamura M. J. Am. Chem. Soc. 2009; 131: 5058
    • 13a Tagata T, Nishida M. Tetrahedron Lett. 2009; 50: 6176
    • 13b Tagata T, Nishida M, Nishida A. Adv. Synth. Catal. 2010; 352: 1662
    • 13c Nishida M, Tagata T. J. Synth. Org. Chem. Jpn. 2011; 69: 1212
  • 14 Wu F, Feng Y, Jones VW. ACS Catal. 2014; 4: 1365
  • 15 Maegawa Y, Inagaki S. Dalton Trans. 2015; 44: 13007
  • 16 Waki M, Maegawa Y, Hara K, Goto Y, Shirai S, Yamada Y, Mizoshita N, Tani T, Chun W.-J, Muratsugu S, Toda M, Fukuoka A, Inagaki S. J. Am. Chem. Soc. 2014; 136: 4003
  • 17 Sawano T, Lin Z, Boures D, An B, Wang C, Lin W. J. Am. Chem. Soc. 2016; 138: 9783
  • 18 Manna K, Zhang T, Lin W. J. Am. Chem. Soc. 2014; 136: 6566
  • 19 Gonzalez MI, Bloch ED, Mason JA, Teat SJ, Long JR. Inorg. Chem. 2015; 54: 2995
  • 20 Manna K, Zhang T, Greene FX, Lin W. J. Am. Chem. Soc. 2015; 137: 2665
  • 21 Tahir N, Miranda FM, Everaeit J, Tack P, Heugebaert T, Leus K, Vincze L, Stevens CV, Speybroeck V, Van der Voort P. J. Catal. 2019; 371: 135
  • 22 Vardhan H, Pan Y, Yang Z, Verma G, Nafady A, Al-Enizi AM, Alotaibi TM, Almaghrabi OA, Ma S. APL Mater. 2019; 7: 101111
  • 23 Maeda K, Uemura Y, Chun W.-J, Satter SS, Nakajima K, Manaka Y, Motokura K. ACS Catal. 2020; 10: 14552
  • 24 Zhuang Z, Wang Y, Chen Z, Wang D, Chen C, Peng Q, Li Y. Mater. Chem. Front. 2020; 4: 1158
  • 25 Newer R, Begum W, Antil N, Shukla S, Kumar A, Akhtar N, Balendra S, Manna K. Inorg. Chem. 2020; 59: 10473
  • 26 Dhakshinamoorthy A, García CV, Concepcion P, Garcia H. Catal. Today 2021; 366: 212