Synthesis 2021; 53(22): 4203-4212
DOI: 10.1055/a-1485-4916
special topic
Special Issue dedicated to Prof. Sarah Reisman, recipient of the 2019 Dr. Margaret Faul Women in Chemistry Award

An I(I)/I(III) Catalysis Route to the Heptafluoroisopropyl Group: A Privileged Module in Contemporary Agrochemistry

Víctor Martín-Heras
,
Constantin G. Daniliuc
,
Ryan Gilmour
We acknowledge financial support from the Westfälische Wilhelms-Universität Münster, the Deutsche Forschungsgemeinschaft (SFB 858), and the Alexander von Humboldt Foundation (postdoctoral fellowship to V.M.-H.).


Abstract

The heptafluoroisopropyl group is emerging as a privileged chemotype in contemporary agrochemistry and features prominently in the current portfolio of leading insecticides. To reconcile the expansive potential of this module with the synthetic challenges associated with preparing crowded, fluorinated motifs, I(I)/I(III) catalysis has been leveraged. Predicated on in situ generation of p-TolIF2, this route enables the direct difluorination of α-trifluoromethyl-β-difluorostyrenes in a single operation. This formal addition of fluorine across the alkene π-bond is efficient (up to 91% yield) and is compatible with a broad range of functional groups. The ArCF(CF3)2 moiety is conformationally preorganised, with the C(sp3)–F bond coplanar to the framework of the aryl ring, thereby minimising 1,3-allylic strain. Moreover, orthogonal multipolar C–F···C=O interactions have been identified in a phthalimide derivative. It is envisaged that this programmed vicinal difluorination enabled by a hypervalent iodine species will find application in functional molecule design in a broader sense.

Supporting Information



Publikationsverlauf

Eingereicht: 31. März 2021

Angenommen nach Revision: 19. April 2021

Accepted Manuscript online:
19. April 2021

Artikel online veröffentlicht:
18. Mai 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
    • 1b Zimmer LE, Sparr C, Gilmour R. Angew. Chem. Int. Ed. 2011; 50: 11860
    • 1c Thiehoff C, Rey YP, Gilmour R. Isr. J. Chem. 2017; 57: 92
    • 1d Aufiero M, Gilmour R. Acc. Chem. Res. 2018; 51: 1701
    • 2a Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 2b Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 2c Wang J, Sánchez-Roselló M, Acenaña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432

      For selected reviews on fluorine in contemporary agrochemistry, see:
    • 3a Jeschke P. ChemBioChem 2004; 5: 570
    • 3b Fujiwara T, O’Hagan D. J. Fluorine Chem. 2014; 167: 16
    • 3c Pazenok S, Leroux FR. In Frontiers of Organofluorine Chemistry . Ojima I. World Scientific; London: 2020: 695
    • 3d Ogawa Y, Tokunaga E, Kobayashi O, Hirai K, Shibata N. iScience 2020; 23: 101467
    • 4a Pagliaro M, Ciriminna R. J. Mater. Chem. 2005; 15: 4981
    • 4b Ragni R, Punzi A, Babudri F, Farinola GM. Eur. J. Org. Chem. 2018; 3500
    • 5a Huchet QA, Kuhn B, Wagner B, Kratochwil NA, Fischer H, Kansy M, Zimmerli D, Carreira EM, Müller K. J. Med. Chem. 2015; 58: 9041
    • 5b Erdeljac N, Kehr K, Ahlqvist M, Knerr L, Gilmour R. Chem. Commun. 2018; 54: 12002
  • 6 Liang T, Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
  • 7 Qacemi MEl, Rendine S, Mainfisch P. In Fluorine in Life Sciences: Pharmaceuticals, Medicinal Diagnostics, and Agrochemicals. Haufe G, Leroux F. Elsevier Inc; London: 2019: 607-623
  • 8 Hoffmann RW. Chem. Rev. 1989; 89: 1841
  • 9 Tohnishi M, Nakao H, Furuya T, Seo A, Kodama H, Tsubata K, Fujioka H, Hirooka T, Nishimatsu T. J. Pestic. Sci. 2005; 30: 354
  • 10 Nesterov A, Spalthoff C, Kandasamy R, Katana R, Rankl NB, Andrés M, Jähde P, Dorsch JA, Stam LF, Braun F.-J, Warren B, Salgado VL, Göpfert MC. Neuron 2015; 86: 665
  • 11 Tsubata K, Tohnishi H, Kodama H, Seo A. Pflanzenschutz-Nachrichten Bayer 2007; 60: 105
  • 12 Liu Y, Zhang Y, Liu S, Lü Y, Lin R, Li M, Liao X, Li X. Chin. J. Chem. Eng. 2018; 26: 2185
  • 13 Hallenbach W, Schwarz H.-G, Ilg K, Görgens U, Köbberling J, Turberg A, Böhnke N, Maue M, Velten R, Harschneck T, Hahn JJ, Horstmann S. WO 2015067646A1, 2015
  • 14 Katsuta H, Nomura M, Wakita T, Daido H, Kobayashi Y, Kawahara A, Banba S. J. Pestic. Sci. 2019; 44: 120
  • 15 Guin J, Rabalakos C, List B. Angew. Chem. Int. Ed. 2012; 51: 8859
  • 16 Karmakar A, Nimje RY, Silamkoti A, Pitchai M, Basha M, Singarayer C, Ramasamay D, Babu GT. V, Samikannu R, Subramaniam S, Anjanappa P, Vetrichelvan M, Kumar H, Dikundwar AG, Gupta A, Gupta AK, Rampulla R, Dhar TG. M, Mathur A. Org. Process Res. Dev. 2021; 25: 1001
  • 17 Neufeld J, Stünkel T, Mück-Lichtenfeld C, Daniliuc C, Gilmour R. Angew. Chem. Int. Ed.. 2021 in press; DOI: 10.1002/anie.202102222.
  • 18 Lepri S, Goracci L, Valeri A, Cruciani G. Eur. J. Med. Chem. 2016; 121: 658
    • 19a Mcloughlin VC. R, Thrower J. Tetrahedron 1969; 25: 5921
    • 19b Jiang D.-F, Liu C, Guo Y, Xiao J.-C, Chen Q.-Y. Eur. J. Org. Chem. 2014; 6303
    • 19c Wang X, Li Y, Zhu Z, Wu Y, Cao W. Org. Chem. Front. 2016; 3: 304
    • 19d Liu X.-H, Leng J, Jia S.-J, Hao J.-H, Zhang F, Qin H.-L, Zhang C.-P. J. Fluorine Chem. 2016; 189: 59
  • 20 Li Y, Wang X, Guo Y, Zhu Z, Wu Y, Gong Y. Chem. Commun. 2016; 52: 796
  • 21 Ono S, Yokota Y, Ito S, Mikami K. Org. Lett. 2019; 21: 1093
    • 22a Molnár IG, Gilmour R. J. Am. Chem. Soc. 2016; 138: 5004
    • 22b Scheidt F, Schäfer M, Sarie JC, Daniliuc CG, Molloy JJ, Gilmour R. Angew. Chem. Int. Ed. 2018; 57: 16431
    • 22c Erdeljac N, Bussmann K, Schöller A, Hansen F, Gilmour R. ACS Med. Chem. Lett. 2019; 10: 1336
    • 22d Meyer S, Häfliger J, Schäfer M, Molloy JJ, Daniliuc CG, Gilmour R. Angew. Chem. Int. Ed. 2021; 60: 6430
    • 23a Weinland RF, Stille W. Ber. Dtsch. Chem. Ges. 1901; 34: 2631
    • 23b Edmunds JJ, Motherwell WB. J. Chem. Soc., Chem. Commun. 1989; 881
    • 23c Sarie JC, Thiehoff C, Mudd RJ, Daniliuc CG, Kehr G, Gilmour R. J. Org. Chem. 2017; 82: 11792

    • For the analogous chlorinated system, see:
    • 23d Sarie JC, Neufeld J, Daniliuc CG, Gilmour R. ACS Catal. 2019; 9: 7232

      For examples from other laboratories, see:
    • 24a Banik SM, Medley JW, Jacobsen EN. J. Am. Chem. Soc. 2016; 138: 5000
    • 24b Haj MK, Banik SM, Jacobsen EN. Org. Lett. 2019; 21: 4919
    • 24c Doobary S, Sedikides AT, Caldora HP, Poole DL, Lennox AJ. J. Angew. Chem. Int. Ed. 2020; 59: 1155

      For selected reviews, see:
    • 25a Kohlhepp SV, Gulder T. Chem. Soc. Rev. 2016; 45: 6270
    • 25b Arnold AM, Ulmer A, Gulder T. Chem. Eur. J. 2016; 22: 8728
    • 25c Doobary S, Lennox AJ. J. Synlett 2010; 1333
    • 25d Wang Y, Yang B, Wu X.-X, Wu Z.-G. Synthesis 2020; 52: 889
  • 26 Lal GS. J. Org. Chem. 1993; 58: 2791
  • 27 For a study on the effect of Brønsted acidity on the activation of PhICl2 by TFA, see: Cotter JL, Andrews LJ, Keefer RM. J. Am. Chem. Soc. 1962; 84: 793
    • 28a Oppolzer W, Bienaymé H, Genevois-Borella A. J. Am. Chem. Soc. 1991; 113: 9661
    • 28b Yajima H, Takeyama M, Kanaki J, Nishimura O, Fujino M. Chem. Pharm. Bull. 1978; 26: 3752
  • 29 Meanwell NA. J. Med. Chem. 2018; 61: 5822

    • van der Waals volumes were calculated according to:
    • 30a Zhao YH, Abraham MH, Zissimos AM. J. Org. Chem. 2003; 68: 7368

    • See:
    • 30b Bondi A. J. Phys. Chem. 1964; 68: 441

    • In order to calculate the volume of a specific fragment, the number of atoms was doubled and the resulting volume was divided by 2
  • 31 Schaefer T, Schurko RW, Sebastian R, Hruska FE. Can. J. Chem. 1995; 73: 816
    • 32a Olsen JA, Banner DW, Seiler P, Sander UO, D’Arcy A, Stihle M, Müller K, Diederich F. Angew. Chem. Int. Ed. 2003; 42: 2507
    • 32b Hof F, Scofield DM, Schweizer WB, Diederich F. Angew. Chem. Int. Ed. 2004; 43: 5056
    • 33a Paulini R, Müller K, Diederich F. Angew. Chem. Int. Ed. 2005; 44: 1788
    • 33b Pollock J, Borkin D, Lund G, Purohit T, Dyguda-Kazimierowicz E, Grembacka J, Cierpicki T. J. Med. Chem. 2015; 58: 7465
    • 34a Struble MD, Scerba MT, Siegler M, Lectka T. Science 2013; 340: 57
    • 34b Pitts CR, Holl MG, Lectka T. Angew. Chem. Int. Ed. 2018; 57: 1924
    • 34c Holl MG, Pitts CR, Lectka T. Acc. Chem. Res. 2020; 53: 265
  • 35 Morken PA, Burton DJ. J. Org. Chem. 1993; 58: 1167
  • 36 Wang F, Li L, Ni C, Hu J. Beilstein J. Org. Chem. 2014; 10: 344
  • 37 Loska R, Bukowska P. Org. Biomol. Chem. 2015; 13: 9872