Synlett 2021; 32(15): 1473-1478
DOI: 10.1055/a-1503-7339
synpacts

Cu(I)–Bis(phosphine) Dioxides as Catalysts for the Enantioselective α-Arylation of Carbonyl Compounds

Margarita Escudero-Casao
,
Giulia Licini
,
We thankfully acknowledge the Department of Chemical Sciences of the Università degli Studi di Padova (P-DiSC#08BIRD2019) for financial support and a postdoctoral fellowship for E.-C. M.


Dedicated to Prof. Franco Cozzi, an ‘evergreen’ mentor, on the occasion of his 70th birthday

Abstract

The transition-metal-catalyzed α-arylation of carbonyl compounds was first reported by Buchwald and Hartwig in 1997. This transformation has been used and studied extensively over the last two decades. Enantioselective variants were also developed that allow for controlling the product stereochemistry. However, these suffer several limitations in the context of formation of tertiary stereocenters. Presented here is our group’s contribution to this research area. The chiral Cu-bis(phosphine) dioxides catalytic system that we reported allowed accessing the enantioselective α-arylation of ketones that were not suitable for this transformation before in good yields and er up to 97.5:2.5. Preliminary insight and speculation concerning the reaction mechanism involving the unusual pairing of bis(phosphine) dioxides with transition-metal catalysts is also given.

1 Introduction

2 State of the Art

3 Enantioselective α-Arylation of Acyclic Ketones

4 Summary and Conclusions



Publikationsverlauf

Eingereicht: 27. April 2021

Angenommen nach Revision: 09. Mai 2021

Accepted Manuscript online:
09. Mai 2021

Artikel online veröffentlicht:
08. Juni 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Harrington PJ, Lodewijk E. Org. Process Res. Dev. 1997; 1: 72
    • 2a Johansson CC. C, Colacot TJ. Angew. Chem. Int. Ed. 2010; 49: 676
    • 2b Bellina F, Rossi R. Chem. Rev. 2010; 110: 1082
    • 2c Mazet C. Synlett 2012; 23: 1999
    • 2d Hao Y.-J, Hu X.-S, Zhou Y, Zhou J, Yu J.-S. ACS Catal. 2019; 10: 955
    • 2e Lee H.-E, Kim D, You A, Park MH, Kim M, Kim C. Catalysts 2020; 10: 861
    • 3a Åhman J, Wolfe JP, Troutman MV, Palucki M, Buchwald SL. J. Am. Chem. Soc. 1998; 120: 1918
    • 3b Spielvogel DJ, Buchwald SL. J. Am. Chem. Soc. 2002; 124: 3500
    • 3c Xie X, Chen Y, Ma D. J. Am. Chem. Soc. 2006; 128: 16050
    • 3d Kündig EP, Seidel TM, Jia Y. x, Bernardinelli G. Angew. Chem. Int. Ed. 2007; 46: 8484
    • 3e García-Fortanet J, Buchwald SL. Angew. Chem. Int. Ed. 2008; 47. 8108
    • 3f Liao X, Weng Z, Hartwig JF. J. Am. Chem. Soc. 2008; 130: 195
    • 3g Taylor AM, Altman RA, Buchwald SL. J. Am. Chem. Soc. 2009; 131: 9900
    • 3h Würtz S, Lohre C, Fröhlich R, Bergander K, Glorius F. J. Am. Chem. Soc. 2009; 131: 8344
    • 3i Ge S, Hartwig JF. J. Am. Chem. Soc. 2011; 133: 16330
    • 3j Xie X, Chen Y, Ma D. J. Am. Chem. Soc. 2006; 128: 16050
    • 4a Bordwell F. Acc. Chem. Res. 1988; 21: 456
    • 4b Bordwell F, Harrelson J. Can. J. Chem. 1990; 68: 1714
  • 5 Huang Z, Liu Z, Zhou J. J. Am. Chem. Soc. 2011; 133: 15882
  • 6 Kobayashi K, Yamamoto Y, Miyaura N. Organometallics 2011; 30: 6323
  • 7 Huang Z, Chen Z, Lim LH, Quang GC. P, Hirao H, Zhou J. Angew. Chem. Int. Ed. 2013; 52: 5807
  • 8 Huang Z, Lim LH, Chen Z, Li Y, Zhou F, Su H, Zhou J. Angew. Chem. Int. Ed. 2013; 52: 4906
  • 9 Allen AE, MacMillan DW. C. J. Am. Chem. Soc. 2011; 133: 4260
  • 10 Bigot A, Williamson AE, Gaunt MJ. J. Am. Chem. Soc. 2011; 133: 13778
  • 11 Harvey JS, Simonovich SP, Jamison CR, MacMillan DW. C. J. Am. Chem. Soc. 2011; 133: 13782
  • 12 Escudero-Casao M, Licini G, Orlandi M. J. Am. Chem. Soc. 2021; 143: 3289
    • 13a Zhdankin VV, Stang PJ. Chem. Rev. 2008; 108: 5299
    • 13b Merritt EA, Olofsson B. Angew. Chem. Int. Ed. 2009; 48: 9052
    • 13c Yoshimura A, Zhdankin VV. Chem. Rev. 2016; 116: 3328
    • 13d Joshi A, De S. R. Eur. J. Org. Chem. 2021; 1837
    • 14a Denmark SE, Beutner GL. Angew. Chem. Int. Ed. 2008; 47: 1560
    • 14b Benaglia M, Rossi S. Org. Biomol. Chem. 2010; 8: 3824
  • 15 Horibe T, Nakagawa K, Hazeyama T, Takeda K, Ishihara K. Chem. Commun. 2019; 55: 13677
  • 16 Horibe T, Sakakibara M, Hiramatsu R, Takeda K, Ishihara K. Angew. Chem. Int. Ed. 2020; 59: 16470
  • 17 Matsukawa S, Sugama H, Imamoto T. Tetrahedron Lett. 2000; 41: 6461
  • 18 Bai Z, Zhang H, Wang H, Yu H, Chen G, He G. J. Am. Chem. Soc. 2020; 143: 1195
    • 20a Santiago CB, Guo J.-Y, Sigman MS. Chem. Sci. 2018; 9: 2398
    • 20b Sigman MS, Harper KC, Bess EN, Milo A. Acc. Chem. Res. 2016; 49: 1292
    • 20c Orlandi M, Coelho JA. S, Hilton MJ, Toste FD, Sigman MS. J. Am. Chem. Soc. 2017; 139: 6803
    • 20d Orlandi M, Toste FD, Sigman MS. Angew. Chem. Int. Ed. 2017; 56: 14080
  • 21 Verloop A. Drug Design, Vol. III . Ariens EJ. Academic Press; New York: 1976
  • 22 Falivene L, Cao Z, Petta A, Serra L, Poater A, Oliva R, Scarano V, Cavallo L. Nat. Chem. 2019; 11: 872
  • 23 Milo A, Bess EN, Sigman MS. Nature 2014; 507: 210
    • 24a Grushin VV. Chem. Rev. 2004; 104: 1629
    • 24b Denmark SE, Smith RC, Tymonko SA. Tetrahedron 2007; 63: 5730
    • 24c Jeffrey JC, Rauchfuss TB. Inorg. Chem. 1979; 18: 2658
    • 24d Bader A, Lindner E. Coord. Chem. Rev. 1991; 108: 27
    • 24e Grushin VV. Organometallics 2001; 20: 3950
    • 24f Zhang W, Hor TS. A. Dalton Trans. 2011; 40: 10725
  • 25 One additional mechanistic hypothesis would agree with this experimental evidence. From an inactive intermediate 26 resting state, two molecules of 22 would need to dissociate in order to form an active phosphine oxide free Cu center. This would then react with 24. In such a picture the total kinetic order for 22 would be –1. However, preliminary experiments seem to discard this hypothesis.
  • 26 Iqbal N, Lee DS, Jung H, Cho EJ. ACS Catal. 2021; 11: 5017