Synthesis 2021; 53(18): 3397-3403
DOI: 10.1055/a-1509-5954
special topic
Bond Activation – in Honor of Prof. Shinji Murai

Nickel-Catalyzed Homocoupling of Aryl Ethers with Magnesium Anthracene Reductant

Vishal Kumar Rawat
b   Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
Kosuke Higashida
a   Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
b   Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
a   Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
b   Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
› Author Affiliations
This work was supported by JSPS KAKENHI (JP20K15268) in Grant-in-Aid for Young Scientists to K.H. and JP18H03906 in Grant-in-Aid for Scientific Research (A) to M.S. JICA is thanked for providing a scholarship to V.K.R. under the FRIENDSHIP project.


Nickel-catalyzed reductive homocoupling of aryl ethers has been achieved with Mg(anthracene)(thf)3 as a readily available low-cost reductant. DFT calculations provided a rationale for the specific efficiency of the diorganomagnesium-type two-electron reducing agent. The calculations show that the dianionic anthracene-9,10-diyl ligand reduces the two aryl ether substrates, resulting in the homocoupling reaction through supply of electrons to the Ni-Mg bimetallic system to form organomagnesium nickel(0)-ate complexes, which cause two sequential C–O bond cleavage reactions. The calculations also showed cooperative actions of Lewis acidic magnesium atoms and electron-rich nickel atoms in the C–O cleavage reactions.

Supporting Information

Publication History

Received: 24 April 2021

Accepted after revision: 17 May 2021

Accepted Manuscript online:
17 May 2021

Article published online:
15 June 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

  • References

    • 1a Vasconcelos SN. S, Reis JS, de Oliveira IM, Balfour MN, Stefani HA. Tetrahedron 2019; 75: 1865
    • 1b Hassan J, Sévignon M, Gozzi C, Schulz E, Lemaire M. Chem. Rev. 2002; 102: 1359
    • 2a Ullmann F, Bielecki J. Ber. Dtsch. Chem. Ges. 1901; 34: 2174
    • 2b Ullmann F, Meyer GM, Loewenthal O, Gilli E. Justus Liebigs Ann. Chem. 1904; 332: 38

      Recent reports on nickel-catalyzed homocoupling reactions:
    • 3a Qiu H, Shuai B, Wang Y.-Z, Liu D, Chen Y.-G, Gao P.-S, Ma H.-X, Chen S, Mei T.-S. J. Am. Chem. Soc. 2020; 142: 9872
    • 3b Rahil R, Sengmany S, Gall EL, Léonel E. Synthesis 2018; 50: 146
    • 3c Lv L, Qiu Z, Li J, Liu M, Li C.-J. Nat. Commun. 2018; 9: 4739
    • 3d Liu Y, Xiao S, Qi Y, Du F. Chem. Asian J. 2017; 12: 673
    • 3e Guo L, Huang C, Liu L, Shao Z, Tong Y, Hou H, Fan Y. Cryst. Growth Des. 2016; 16: 4926
    • 3f Maddaluno J, Durandetti M. Synlett 2015; 26: 2385
    • 3g Yamamoto T. Appl. Organomet. Chem. 2014; 28: 598

      Recent reports on palladium-catalyzed homocoupling reactions:
    • 4a Schroeter F, Lerch S, Strassner T. Org. Process Res. Dev. 2018; 22: 1614
    • 4b Lakshmidevi J, Appa RM, Naidu BR, Prasad SS, Sarma LS, Venkateswarlu K. Chem. Commun. 2018; 54: 12333
    • 4c Zhong S, Chen M, Liu G, Sun C, Liu W. Appl. Organomet. Chem. 2017; 31: e3705
    • 4d Huang Y, Liu L, Feng W. ChemistrySelect 2016; 3: 630
  • 5 Nakamura K, Tobisu M, Chatani N. Org. Lett. 2015; 17: 6142
    • 6a Tobisu M, Chatani N. Acc. Chem. Res. 2015; 48: 1717
    • 6b Zeng H, Qiu Z, Domínguez-Huerta A, Hearne Z, Chen Z, Li C.-J. ACS Catal. 2017; 7: 510
    • 6c Qiu Z, Li C.-J. Chem. Rev. 2020; 120: 10454
    • 7a Yu D.-G, Li B.-J, Zheng S.-F, Guan B.-T, Wang B.-Q, Shi Z.-J. Angew. Chem. Int. Ed. 2010; 49: 4566
    • 7b Sergeev AG, Hartwig JF. Science 2011; 332: 439
    • 7c Liu X, Hsiao C.-C, Kalvet I, Leiendecker M, Guo L, Schoenebeck F, Rueping N. Angew. Chem. Int. Ed. 2016; 55: 6093
    • 7d Yang Z.-K, Wang D.-Y, Minami H, Ogawa H, Ozaki T, Saito T, Miyamoto K, Wang C, Uchiyama M. Chem. Eur. J. 2016; 22: 15693
    • 7e Kelley P, Edouard GA, Lin S, Agapie T. Chem. Eur. J. 2016; 22: 17173

      The chemical structure of 1 was discussed:
    • 8a Bogdanović B, Liao S, Mynott R, Schlichte K, Westeppe U. Chem. Ber. 1984; 117: 1378
    • 8b Engelhardt LM, Harvey S, Raston CL, White AH. J. Organomet. Chem. 1988; 341: 39

      For a variety of chemical properties of 1, see:
    • 9a Bogdanović B. Acc. Chem. Res. 1988; 21: 261
    • 9b Bogdanović B, Janke N, Kinzelmann H.-G. Chem. Ber. 1990; 123: 1507

      For reducing ability of 1 toward organic compounds, see:
    • 10a Bogdanovíc B, Schlichte K, Westeppe U. Chem. Ber. 1988; 121: 27
    • 10b Raston CL, Salem G. J. Chem. Soc., Chem. Commun. 1984; 1702
    • 10c Harvey S, Junk PC, Raston CL, Salem G. J. Org. Chem. 1988; 53: 3134
    • 10d Velian A, Cummins CC. J. Am. Chem. Soc. 2012; 134: 13978

      For reducing ability of 1 toward metal reagents, see:
    • 11a Bönnemann H, Bogdanović B, Brinkmann R, He D.-W, Spliethoff B. Angew. Chem., Int. Ed. Engl. 1983; 22: 728
    • 11b Scholz J, Thiele K.-H. J. Organomet. Chem. 1986; 314: 7
    • 11c Stanger A, Vollhardt KP. C. Organometallics 1992; 11: 317
    • 11d Aleandri LE, Bogdanović B, Dürr C, Huckett SC, Jones DJ, Kolb U, Lagarden M, Rozière J, Wilczok U. Chem. Eur. J. 1997; 3: 1710
    • 11e Hatnean JA, Beck R, Borrelli JD, Johnson SA. Organometallics 2010; 29: 6077
  • 12 For a large-scale preparation of 1, see: Transue WJ, Velian A, Nava M, García-Iriepa C, Temprado M, Cummins CC. J. Am. Chem. Soc. 2017; 139: 10822
  • 13 The ligand exchange between an acetylacetonate ligand and an η3-anthracenyl ligand in the reaction of [Ni(acac)Cp*] with 1 was reported. Thus, the low catalytic activity of Ni(acac)2 pre-catalyst may be due to the formation of such nickel anthracene complexes, see: Schneider JJ, Wolf D, Denninger U, Goddard R, Krüger C. J. Organomet. Chem. 1999; 579: 139
    • 14a Cornella J, Gómez-Bengoa E, Martin R. J. Am. Chem. Soc. 2013; 135: 1997
    • 14b Schwarzer MC, Konno R, Hojo T, Ohtsuki A, Nakamura K, Yasutomo A, Takahashi H, Shimasaki T, Tobisu M, Chatani N, Mori S. J. Am. Chem. Soc. 2017; 139: 10347
    • 14c Uthayopas C, Surawatanawong P. Dalton Trans. 2019; 7817
  • 15 The first report of Kumada–Tamao–Corriu-type coupling of aryl ethers; Wenkert E, Michelotti EL, Swindell CS. J. Am. Chem. Soc. 1979; 101: 2246

    • Recent reports of Kumada–Tamao–Corriu-type coupling of aryl ethers:
    • 16a Ambre R, Yang H, Chen W.-C, Yap GP. A, Jurca T, Ong T.-G. Eur. J. Inorg. Chem. 2019; 3511
    • 16b Ghorai D, Loup J, Zanoni G, Ackermann L. Synlett 2019; 30: 429
    • 16c Yang Z.-K, Xu N.-X, Takita R, Muranaka A, Wang C, Uchiyama M. Nat. Commun. 2018; 9: 1587
    • 16d Wang T.-H, Ambre R, Wang Q, Lee W.-C, Wang P.-C, Liu Y, Zhao L, Ong T.-G. ACS Catal. 2018; 8: 11368
    • 16e Harkness GJ, Clarke ML. Catal. Sci. Technol. 2018; 8: 328
    • 17a Ogawa H, Minami H, Ozaki T, Komagawa S, Wang C, Uchiyama M. Chem. Eur. J. 2015; 21: 13904
    • 17b Kojima K, Yang Z.-K, Wang C, Uchiyama M. Chem. Pharm. Bull. 2017; 65: 862
  • 18 Details of the calculations are described in the Supporting Information
  • 19 Huang K.-L, Zou J.-H, Liu J.-Z, Jin G, Li J.-B, Yao S.-L, Peng J.-B, Cao Y, Zhu X.-H. Org. Electron. 2018; 58: 139