Synthesis 2021; 53(21): 4030-4041
DOI: 10.1055/a-1526-7839
feature

Facile Synthesis of Polysubstituted 2-Pyrones via TfOH-Mediated Ring Expansion of 2-Acylcyclopropane-1-carboxylates

Jiru Shao
a   Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Lu, Shanghai 200241, P. R. of China
,
Caiyun An
a   Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Lu, Shanghai 200241, P. R. of China
,
a   Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Lu, Shanghai 200241, P. R. of China
b   Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663 North Zhongshan Lu, Shanghai 200062, P. R. of China
› Author Affiliations
This work was sponsored by the Shanghai Pujiang Program (Grant No. 19PJ1402700), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, the National Natural Science Foundation of China (No. 22071059), and the East China Normal University (ECNU).


Abstract

A facile route to polysubstituted 2-pyrones from readily available 2-acylcyclopropane-1-aryl-1-carboxylates mediated by TfOH is reported. The strongly donating 1-aryl group is important for directing the C–C bond cleavage of the donor-acceptor cyclopropane ring, which then leads to the formation of the 2-pyrone ring through lactonization.

Supporting Information



Publication History

Received: 19 May 2021

Accepted after revision: 10 June 2021

Accepted Manuscript online:
10 June 2021

Article published online:
08 July 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Sunazuka T, Omura S. Chem. Rev. 2005; 105: 4559
    • 1b Goel A, Ram VJ. Tetrahedron 2009; 65: 7865
    • 1c McGlacken GP, Fairlamb IJ. S. J. Nat. Prod. 2005; 22: 369
    • 1d Stout EP, Hasemeyer AP, Lane AL, Davenport TM, Engel S, Hay ME, Fairchild CR, Prudhomme J, Le Roch K, Aalbersberg W, Kubanek J. Org. Lett. 2009; 11: 225
    • 1e Praveen C, Ayyanar A, Perumal PT. Bioorg. Med. Chem. Lett. 2011; 21: 4170
    • 1f Dong Y, Goto KN, Lai CY, Natschke SL. M, Bastow KF, Lee KH. Bioorg. Med. Chem. Lett. 2011; 21: 2341
    • 1g Shankar R, Chakravarti B, Singh US, Ansari MI, Deshpande S, Dwivedi SK. D, Bid HK, Konwar R, Kharkwal G, Chandra V, Dwivedi A, Hajela K. Bioorg. Med. Chem. 2009; 17: 3847
    • 1h Fairlamb IJ. S, Morrison LR, Dickinson JM, Lu FJ, Schmidt JP. Bioorg. Med. Chem. 2004; 12: 4285
    • 1i Rao PN. P, Uddin MJ, Knaus EE. J. Med. Chem. 2004; 47: 3972
    • 1j Marrison LR, Dickinson JM, Fairlamb LJ. Bioorg. Med. Chem. Lett. 2002; 12: 3509
    • 1k Rao PN. P, Amini PM, Li H, Habeeb AG, Knaus EE. J. Med. Chem. 2003; 46: 4872
    • 1l Lee I.-K, Yun B.-S. J. Antibiot. 2011; 64: 349
    • 1m Lee JS. Mar. Drugs 2015; 13: 1581
    • 1n Fürstner A. Angew. Chem. Int. Ed. 2018; 57: 4215

      For selective recent examples:
    • 2a Palani V, Perea MA, Gardner KE, Sarpong R. Chem. Sci. 2021; 12: 1528
    • 2b Chinta BS, Lee D, Hoye TR. Org. Lett. 2021; 23: 2189
    • 2c Cole CJ. F, Fuentes L, Snyder SA. Chem. Sci. 2020; 11: 2175
    • 2d Zhang X, Beaudry CM. Org. Lett. 2020; 22: 6086
    • 2e Disadee W, Lekky A, Ruchirawat S. J. Org. Chem. 2020; 85: 1802
    • 2f Liang X.-W, Zhao Y, Si X.-G, Xu M.-M, Tan J.-H, Zhang Z.-M, Zheng C.-G, Zheng C, Cai Q. Angew. Chem. Int. Ed. 2019; 58: 14562
    • 2g Cai Q. Chin. J. Chem. 2019; 37: 946

      For selective recent examples:
    • 3a Zheng P, Li C, Mou C, Pan D, Wu S, Xue W, Jin Z, Chi YR. Asian J. Org. Chem. 2019; 8: 1067
    • 3b Xu L.-C, Zhou P, Li J.-Z, Hao W.-J, Tu S.-J, Jiang B. Org. Chem. Front. 2018; 5: 753
    • 3c Kim HY, Oh K. Org. Lett. 2017; 19: 4904
    • 3d Minakata S, Inada H, Komatsu M, Kajii H, Ohmori Y, Tsumura M, Namura K. Chem. Lett. 2008; 37: 248
    • 3e Usachev BI, Obydennov DL, Röschenthaler GV, Sosnovskikh VY. Org. Lett. 2008; 10: 2857
    • 3f Zhu XF, Schaffner AP, Li RC, Kwon O. Org. Lett. 2005; 7: 2977
    • 3g Katritzky AR, Wang Z, Wang M, Hall CD, Suzuki K. J. Org. Chem. 2005; 70: 4854
    • 3h Ma S, Yu S, Yin S. J. Org. Chem. 2003; 68: 8996
    • 3i Yao T, Larock RC. J. Org. Chem. 2003; 68: 5936
    • 3j Ma S, Yin S, Li L, Tao F. Org. Lett. 2002; 4: 505
    • 3k Hirano K, Minakata S, Komatsu M. Bull. Chem. Soc. Jpn. 2001; 74: 1567
    • 4a Zhou P, Yang W.-T, Rahman AU, Li G, Jiang B. J. Org. Chem. 2020; 85: 360
    • 4b Matsuda T, Suzuki K. RSC Adv. 2014; 4: 37138
    • 4c Chaładaj W, Corbet M, Fürstner A. Angew. Chem. Int. Ed. 2012; 51: 6929
    • 4d Bengtsson C, Almqvist F. J. Org. Chem. 2011; 76: 9187
    • 4e Mochida S, Hirano K, Satoh T, Miura M. J. Org. Chem. 2009; 74: 6295
    • 4f Luo T, Schreiber SL. Angew. Chem. Int. Ed. 2007; 46: 8250
    • 4g Fukuyama T, Higashibeppu Y, Yamaura R, Ryu I. Org. Lett. 2007; 9: 587
    • 4h Wang Y, Burton DJ. J. Org. Chem. 2006; 71: 3859
    • 4i Komiyama T, Takaguchi Y, Gubaidullin AT, Mamedov VA, Litvinov IA, Tsuboi S. Tetrahedron 2005; 61: 2541
    • 4j Louie J, Gibby JE, Farnworth MV, Tekavec TN. J. Am. Chem. Soc. 2002; 124: 15188
    • 4k Thibonnet J, Abarbri M, Parrain JL, Duchêne A. J. Org. Chem. 2002; 67: 394
    • 4l Liu R, Li X, Li X, Wang J, Yang Y. J. Org. Chem. 2019; 84: 14141
    • 4m Preindl J, Schulthoff S, Wirtz C, Lingnau J, Fürstner A. Angew. Chem. Int. Ed. 2017; 56: 7525
    • 4n Preindl J, Jouvin K, Laurich D, Seidel G, Fürstner A. Chem. Eur. J. 2016; 22: 237
    • 4o Manikandan R, Jeganmohan M. Org. Lett. 2014; 16: 652
    • 4p Anastasia LXu C.. Negishi E.-i. Tetrahedron Lett. 2002; 43: 5673
    • 4q Bellina F, Biagetti M, Carpita A, Rossi R. Tetrahedron Lett. 2001; 42: 2859
    • 5a Liu J, Liu R, Wei Y, Shi M. Trends Chem. 2019; 1: 779
    • 5b De N, Yoo EJ. ACS Catal. 2018; 8: 48
    • 5c Special Issue: Chemistry of Donor-Acceptor Cyclopropanes and Cyclobutanes: Reissig H.-U, Werz DB. Isr. J. Chem. 2016; 56: 365-577
    • 5d Grover HK, Emmett MR, Kerr MA. Org. Biomol. Chem. 2015; 13: 655
    • 5e Novikov RA, Tomilov YV. Mendeleev Commun. 2015; 25: 1
    • 5f Schneider TF, Kaschel J, Werz DB. Angew. Chem. Int. Ed. 2014; 53: 5504
    • 5g Cavitt MA, Phun KH, France S. Chem. Soc. Rev. 2014; 43: 804
    • 5h De Nanteuil F, De Simone F, Frei R, Benfatti F, Serrano E, Waser J. Chem. Commun. 2014; 50: 10912
    • 5i Reissig HU, Zimmer R. Chem. Rev. 2003; 103: 1151
    • 5j Werz DB, Biju AT. Angew. Chem. Int. Ed. 2020; 59: 3385
    • 5k Xia Y, Liu X, Feng X. Angew. Chem. Int. Ed. 2020; 60: 9192
    • 5l Pirenne V, Muriel B, Waser J. Chem. Rev. 2021; 121: 227
    • 5m Augustin AU, Werz DB. Acc. Chem. Res. 2021; 54: 1528
  • 6 Shao J, Luo Q, Bi H, Wang SR. Org. Lett. 2021; 23: 459
    • 7a Li G.-Q, Dai L.-X, You S.-L. Org. Lett. 2009; 11: 1623
    • 7b Sathishkannan G, Srinivasan K. Adv. Synth. Catal. 2014; 356: 729
    • 7c Zhu Y, Gong Y. J. Org. Chem. 2015; 80: 490
    • 8a Yin D, Liu H, Lu C.-D, Xu Y.-J. J. Org. Chem. 2017; 82: 3252
    • 8b Fauduet H, Burgada R. Synthesis 1980; 642
    • 8c Romanova IP, Bogdanov AV, Mironov VF, Shaikhutdinova GR, Larionova OA, Latypov SK, Bal-andina AA, Yakh-varov DG, Gubaidullin AT, Saifina AF, Sinyashin OG. J. Org. Chem. 2011; 76: 2548
    • 8d Zhang J, Hao J, Huang Z, Han J, He Z. Chem. Commun. 2020; 56: 10251
    • 9a Venkatesh C, Singh PP, Ila H, Junjappa H. Eur. J. Org. Chem. 2006; 5378
    • 9b Nguyen TN, Nguyen TS, May JA. Org. Lett. 2016; 18: 3786
    • 10a Węcławski MK, Tasior M, Hammann T, Cywiński PJ, Gryko DT. Chem. Commun. 2014; 50: 9105
    • 10b Węcławski MK, Deperasińska I, Banasiewicz M, Young DC, Leniak A, Gryko DT. Chem. Asian J. 2019; 14: 1763
    • 10c Xue W, Wang D, Li C, Zhai Z, Wang T, Liang Y, Zhang Z. J. Org. Chem. 2020; 85: 3689
    • 11a Campeau L.-C, Parisien M, Leblanc M, Fagnou K. J. Am. Chem. Soc. 2004; 126: 9186
    • 11b Campeau L.-C, Parisien M, Jean A, Fagnou K. J. Am. Chem. Soc. 2006; 128: 581
    • 12a Zhang J, Li S, Qiao Y, Peng C, Wang X.-N, Chang J. Chem. Commun. 2018; 54: 12455
    • 12b Hsiao H.-C, Annamalai P, Jayakumar J, Sun S.-Y, Chuang S.-C. Adv. Synth. Catal. 2021; 363: 1695
  • 13 Armstrong A, Baxter CA, Lamont SG, Pape AR, Wincewicz R. Org. Lett. 2007; 9: 351
    • 14a Minatti A, Zheng X, Buchwald SL. J. Org. Chem. 2007; 72: 9253
    • 14b Komatsuki K, Kozuma A, Saito K, Yamada T. Org. Lett. 2019; 21: 6628
  • 15 Tan P, Wang H, Wang SR. Org. Lett. 2021; 23: 2590
  • 16 CCDC 2083287 (8n) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.