Synthesis 2022; 54(04): 975-998
DOI: 10.1055/a-1532-4763
special topic
Cycloadditions – Established and Novel Trends – in Celebration of the 70th Anniversary of the Nobel Prize Awarded to Otto Diels and Kurt Alder

Recent Applications of the Diels–Alder Reaction in the Synthesis of Natural Products (2017–2020)

Alexandru A. Sara
a   Leibniz Universität Hannover, Institut für Organische Chemie, Schneiderberg 1 B, 30167 Hannover, Germany
,
Um-e-Farwa Um-e-Farwa
b   Quaid-I-Azam University, Department of Chemistry, Islamabad-45320, Pakistan
,
Aamer Saeed
b   Quaid-I-Azam University, Department of Chemistry, Islamabad-45320, Pakistan
,
a   Leibniz Universität Hannover, Institut für Organische Chemie, Schneiderberg 1 B, 30167 Hannover, Germany
c   Helmholtz Zentrum für Infektionsforschung (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
› Author Affiliations
A.S. gratefully acknowledges a postdoctoral fellowship from the Alexander von Humboldt Foundation, Germany.


Abstract

The Diels–Alder reaction has long been established as an extremely useful procedure in the toolbox of natural product chemists. It tolerates a wide spectrum of building blocks of different complexity and degrees of derivatization, and enables the formation of six-membered rings with well-defined stereochemistry. In recent years, many total syntheses of natural products have been reported that rely, at some point, on the use of a [4+2]-cycloaddition step. Among classic approaches, several modifications of the Diels–Alder reaction, such as hetero-Diels–Alder reactions, dehydro-Diels–Alder reactions and domino-Diels–Alder reactions, have been employed to extend the scope of this process in the synthesis of natural products. Our short review covers applications of the Diels–Alder reaction in natural product syntheses between 2017 and 2020, as well as selected methodologies which are inspired by, or that can be used to access natural products.

1 Introduction

2 Syntheses from 2017

3 Syntheses from 2018

4 Syntheses from 2019

5 Syntheses from 2020

6 Conclusion



Publication History

Received: 28 April 2021

Accepted after revision: 21 June 2021

Accepted Manuscript online:
21 June 2021

Article published online:
04 August 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Holmes H. Org. React. 2004; 4: 60
  • 2 Buonora P, Olsen J.-C, Oh T. Tetrahedron 2001; 57: 6099
  • 3 Schmidt RR. Acc. Chem. Res. 1986; 19: 250
  • 4 Boger DL, Panek JS. J. Am. Chem. Soc. 1985; 107: 5745
  • 5 Tietze LF. J. Heterocycl. Chem. 1990; 27: 47
  • 6 Ichihara A. Synthesis 1987; 207
  • 7 Wessig P, Müller G. Chem. Rev. 2008; 108: 2051
  • 8 Hoye TR, Baire B, Niu D, Willoughby PH, Woods BP. Nature 2012; 490: 208
  • 9 Cao M.-H, Green NJ, Xu S.-Z. Org. Biomol. Chem. 2017; 15: 3105
  • 10 Yang B, Gao S. Chem. Soc. Rev. 2018; 47: 7926
  • 11 Liang W.-J, Geng C.-A, Zhang X.-M, Chen H, Yang C.-Y, Rong G.-Q, Zhao Y, Xu H.-B, Wang H, Zhou N.-J. Org. Lett. 2013; 16: 424
  • 12 Constantino AF, Francisco CS, Cubides-Roman DC, Lacerda J. Curr. Org. Synth. 2018; 15: 84
  • 13 Xu L, Liu F, Xu L.-W, Gao Z, Zhao Y.-M. Org. Lett. 2016; 18: 3698
  • 14 Li T.-Z, Geng C.-A, Yin X.-J, Yang T.-H, Chen X.-L, Huang X.-Y, Ma Y.-B, Zhang X.-M, Chen J.-J. Org. Lett. 2017; 19: 429
  • 15 Huang B, Xiao C.-J, Huang Z.-Y, Tian X.-Y, Cheng X, Dong X, Jiang B. Org. Lett. 2014; 16: 3552
  • 16 Deng H, Cao W, Liu R, Zhang Y, Liu B. Angew. Chem. Int. Ed. 2017; 56: 5849
  • 17 Li F, Tu Q, Chen S, Zhu L, Lan Y, Gong J, Yang Z. Angew. Chem. Int. Ed. 2017; 56: 5844
  • 18 Liu D.-D, Sun T.-W, Wang K.-Y, Lu Y, Zhang S.-L, Li Y.-H, Jiang Y.-L, Chen J.-H, Yang Z. J. Am. Chem. Soc. 2017; 139: 5732
  • 19 Greunke C, Glöckle A, Antosch J, Gulder TA. Angew. Chem. Int. Ed. 2017; 56: 4351
  • 20 Chinta BS, Siraswar A, Baire B. Tetrahedron 2017; 73: 4178
  • 21 Reddy MC, Jeganmohan M. Chem. Sci. 2017; 8: 4130
  • 22 Chinta BS, Baire B. Org. Biomol. Chem. 2017; 15: 5908
  • 23 Jian H, Liu K, Wang W.-H, Li Z.-J, Dai B, He L. Tetrahedron Lett. 2017; 58: 1137
  • 24 Li Y, Dai M. Angew. Chem. Int. Ed. 2017; 56: 11624
  • 25 Sarotti AM. Org. Biomol. Chem. 2018; 16: 944
  • 26 Zhang L, Liu Y, Liu K, Liu Z, He N, Li W. Org. Biomol. Chem. 2017; 15: 8743
  • 27 McGee P, Bétournay G, Barabé F, Barriault L. Angew. Chem. Int. Ed. 2017; 56: 6280
  • 28 Gonzalez AG, Crespo IA, Ravelo AG, Muñoz OM. Nat. Prod. Lett. 1994; 4: 165
  • 29 Lam HC, Pepper HP, Sumby CJ, George JH. Angew. Chem. Int. Ed. 2017; 56: 8532
  • 30 Carreira EM, Hönig M. Synfacts 2017; 13: 449
  • 31 Cheng S.-Y, Huang K.-J, Wang S.-K, Wen Z.-H, Chen P.-W, Duh C.-Y. J. Nat. Prod. 2010; 73: 771
  • 32 Feng J, Lei X, Guo Z, Tang Y. Angew. Chem. Int. Ed. 2017; 56: 7895
  • 33 Huang J, Gu Y, Guo K, Zhu L, Lan Y, Gong J, Yang Z. Angew. Chem. Int. Ed. 2017; 56: 7890
  • 34 McCabe SR, Wipf P. Angew. Chem. Int. Ed. 2017; 56: 324
  • 35 Jayakumar S, Louven K, Strohmann C, Kumar K. Angew. Chem. Int. Ed. 2017; 56: 15945
  • 36 Tooriyama S, Mimori Y, Wu Y, Kogure N, Kitajima M, Takayama H. Org. Lett. 2017; 19: 2722
  • 37 Leng L, Zhou X, Liao Q, Wang F, Song H, Zhang D, Liu XY, Qin Y. Angew. Chem. Int. Ed. 2017; 56: 3703
  • 38 Xu J, Wipf P. Org. Biomol. Chem. 2017; 15: 7093
  • 39 Weilbeer C, Sickert M, Naumov S, Schneider C. Chem. Eur. J. 2017; 23: 513
  • 40 Llona-Minguez S, Throup A, Steiner E, Lightowler M, Van der Haegen S, Homan E, Eriksson L, Stenmark P, Jenmalm-Jensen A, Helleday T. Org. Biomol. Chem. 2017; 15: 7758
  • 41 Jarrige L, Blanchard F, Masson G. Angew. Chem. Int. Ed. 2017; 56: 10573
  • 42 Nannini LJ, Nemat SJ, Carreira EM. Angew. Chem. Int. Ed. 2018; 57: 823
  • 43 Liu J, Ma D. Angew. Chem. Int. Ed. 2018; 57: 6676
  • 44 Su F, Lu Y, Kong L, Liu J, Luo T. Angew. Chem. Int. Ed. 2018; 57: 760
  • 45 Pan S, Chen S, Dong G. Angew. Chem. Int. Ed. 2018; 57: 6333
  • 46 Wang N, Liu J, Wang C, Bai L, Jiang X. Org. Lett. 2017; 20: 292
  • 47 Leung JC, Bedermann AA, Njardarson JT, Spiegel DA, Murphy GK, Hama N, Twenter BM, Dong P, Shirahata T, McDonald IM, Inoue M, Taniguchi N, McMahon TC, Schneider CM, Tao N, Stoltz BM, Wood JL. Angew. Chem. Int. Ed. 2018; 57: 1991
  • 48 Qiao C, Zhang W, Han J.-C, Dai W.-M, Li C.-C. Tetrahedron 2019; 75: 1739
  • 49 Otrubova K, Fitzgerald AE, Mani NS. Tetrahedron 2018; 74: 5715
  • 50 Xue X.-S, Levandowski BJ, He CQ, Houk K. Org. Lett. 2018; 20: 6108
  • 51 Stork G, Yamashita A, Hanson RM, Phan L, Phillips E, Dubé D, Bos PH, Clark AJ, Gough M, Greenlee ML. Org. Lett. 2017; 19: 5150
  • 52 Gong P.-X, Li H.-J, Wang M, Cheng Y.-F, Wu Y.-C. Nat. Prod. Res. 2019; 33: 2911
  • 53 Zhang J, Lin L, He C, Xiong Q, Liu X, Feng X. Chem. Commun. 2018; 54: 74
  • 54 Wu Y, Dockendorff C. Tetrahedron Lett. 2018; 59: 3373
  • 55 Liang H. Beilstein J. Org. Chem. 2008; 4: 31
  • 56 Shen Y, Wang C, Chen W, Cui S. Org. Chem. Front. 2018; 5: 3574
  • 57 Hu Y, Li S, Wang Z, Yao Y, Li T, Yu C, Yao C. J. Org. Chem. 2018; 83: 3361
  • 58 Wang HF, Wang SY, Qin TZ, Zi W. Chem. Eur. J. 2018; 24: 17911
  • 59 Gu B.-Q, Yang W.-L, Wu S.-X, Wang Y.-B, Deng W.-P. Org. Chem. Front. 2018; 5: 3430
  • 60 Davison EK, Hume PA, Sperry J. Org. Lett. 2018; 20: 3545
  • 61 Huang Y, Li Y, Sun J, Li J, Zha Z, Wang Z. J. Org. Chem. 2018; 83: 8464
  • 62 Lee J.-H, Cho C.-G. Org. Lett. 2018; 20: 7312
  • 63 Panda P, Nayak S, Sahoo SK, Mohapatra S, Nayak D, Pradhan R, Kundu CN. RSC Adv. 2018; 8: 16802
  • 64 Krieger J, Smeilus T, Kaiser M, Seo E.-J, Efferth T, Giannis A. Angew. Chem. Int. Ed. 2018; 57: 8293
  • 65 Li P.-J, Dräger G, Kirschning A. Org. Lett. 2019; 21: 998
  • 66 Zheng H, Wang Y, Xu C, Xiong Q, Lin L, Feng X. Angew. Chem. Int. Ed. 2019; 58: 5327
  • 67 Xu B, Wang B, Xun W, Qiu FG. Angew. Chem. Int. Ed. 2019; 58: 5754
  • 68 Thirupathi N, Wei F, Tung C.-H, Xu Z. Nat. Commun. 2019; 10: 1
  • 69 Zhang Z, Jamieson CS, Zhao Y.-L, Li D, Ohashi M, Houk KN, Tang Y. J. Am. Chem. Soc. 2019; 141: 5659
  • 70 Singh SB, Liu W, Li X, Chen T, Shafiee A, Card D, Abruzzo G, Flattery A, Gill C, Thompson JR. ACS Med. Chem. Lett. 2012; 3: 814
  • 71 Zhu C, Kuniyil R, Ackermann L. Angew. Chem. Int. Ed. 2019; 58: 5338
  • 72 Zhou Y, Nikbakht A, Bauer F, Breit B. Chem. Sci. 2019; 10: 4805
  • 73 Ukis R, Schneider C. J. Org. Chem. 2019; 84: 7175
  • 74 Chen Q, Gao J, Jamieson C, Liu J, Ohashi M, Bai J, Yan D, Liu B, Che Y, Wang Y. J. Am. Chem. Soc. 2019; 141: 14052
  • 75 Wåhlander J, Amedjkouh M, Gundersen L.-L. Monatsh. Chem. 2019; 150: 49
    • 76a Ortega HE, Graupner PR, Asai Y, Tendyke K, Qiu D, Shen Y, Rios N, Arnold AE, Coley PD, Kursar TA, Gerwick WH, Cubilla-Rios L. J. Nat. Prod. 2013; 76: 741
    • 76b Zhou S, Chen H, Luo Y, Zhang W, Li A. Angew. Chem. Int. Ed. 2015; 54: 6878
  • 77 Xue D, Xu M, Zheng C, Yang B, Hou M, He H, Gao S. Chin. J. Chem. 2019; 37: 135
  • 78 Xu WL, Tang L, Ge CY, Chen J, Zhou L. Adv. Synth. Catal. 2019; 361: 2268
  • 79 Kiamehr M, Mohammadkhani L, Khodabakhshi MR, Jafari B, Langer P. Synlett 2019; 30: 1782
  • 80 Gulbrandsen HS, Serigstad H, Lovell Read M, Joos I, Gundersen LL. Eur. J. Org. Chem. 2019; 6044
  • 81 Wang Z, Shen G, Huang X, Gong S, Yang B, Sun Z, Zhang Z, Liu W. Chem. Res. Chin. Univ. 2020; 36: 835
  • 82 Kamakura D, Todoroki H, Urabe D, Hagiwara K, Inoue M. Angew. Chem. Int. Ed. 2020; 59: 479
  • 83 Gandon V, Jarrige LJ, Masson G. Chem. Eur. J. 2019; 26: 1406
  • 84 Noland WE, Abzhabarov FZ. Synth. Commun. 2020; 50: 168
  • 85 Liu X, Zhang J, Bai L, Wang L, Yang D, Wang R. Chem. Sci. 2020; 11: 671
  • 86 Zhao S, Cheng S, Liu H, Zhang J, Liu M, Yuan W, Zhang X. Chem. Commun. 2020; 56: 4200
  • 87 Murakami K, Toma T, Fukuyama T, Yokoshima S. Angew. Chem. Int. Ed. 2020; 59: 6253
  • 88 Osano M, Jhaveri DP, Wipf P. Org. Lett. 2020; 22: 2215
  • 89 Suri M, Hussain F, Gogoi C, Das P, Pahari P. Org. Biomol. Chem. 2020; 18: 2058
  • 90 Schneider F, Samarin K, Zanella S, Gaich T. Science 2020; 367: 676
  • 91 Godfrey RC, Green NJ, Nichol GS, Lawrence AL. Nat. Chem. 2020; 12: 615
  • 92 Birch A, Wright J. J. Chem. Soc., Chem. Commun. 1969; 644b
  • 93 Quintela-Varela H, Jamieson CS, Shao Q, Houk KN, Trauner D. Angew. Chem. Int. Ed. 2020; 59: 5263