Synthesis, Inhaltsverzeichnis Synthesis 2021; 53(22): 4272-4278DOI: 10.1055/a-1538-8429 special topic Special Issue dedicated to Prof. Sarah Reisman, recipient of the 2019 Dr. Margaret Faul Women in Chemistry Award A de novo Synthesis of Oxindoles from Cyclohexanone-Derived γ-Keto-Ester Acceptors Using a Desaturative Amination–Cyclization Approach Authors Institutsangaben Henry P. Caldora‡ a Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK Sebastian Govaerts‡ a Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK Shashikant U. Dighe a Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK Oliver J. Turner b Oncology R&D, Research & Early Development, AstraZeneca, Darwin building, 310, Cambridge Science Park, Milton Road, Cambridge CB4 0WG, UK Daniele Leonori ∗ a Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK Artikel empfehlen Abstract Artikel einzeln kaufen(opens in new window) Alle Artikel dieser Rubrik(opens in new window) Dedicated to Prof Sarah Reisman in recognition on her award of the inaugural Margaret Faul Women in Chemistry Award. Abstract Here we report a desaturative approach for oxindole synthesis. This method uses simple ethyl 2-(2-oxocyclohexyl)acetates and primary amine building blocks as coupling partners. A dual photoredox–cobalt manifold is used to generate a secondary aniline that, upon heating, cyclizes with the pendent ester functionality. The process operates under mild conditions and was applied to the modification of several amino acids, the blockbuster drug mexiletine, as well as the formation of dihydroquinolinones. Key words Key wordsphotoredox - cobalt catalysis - dehydrogenative amination - late-stage modification - amino acids - oxindole Volltext Referenzen References 1a Pennington LD, Moustakas DT. J. Med. Chem. 2017; 60: 3552 1b Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257 1c Taylor RD, MacCoss M, Lawson AD. G. J. Med. Chem. 2014; 57: 5845 1d Lamberth C. Pest Manage. Sci. 2013; 69: 1106 2a Marti C, Carreira EM. Eur. J. Org. Chem. 2003; 2003: 2209 2b Leoni A, Locatelli A, Morigi R, Rambaldi M. Expert Opin. Ther. Pat. 2016; 26: 149 3a Durbin MJ, Willis MC. Org. Lett. 2008; 10: 1413 3b Jensen T, Madsen R. J. Org. Chem. 2009; 74: 3990 3c Chen W.-T, Wei W.-T. Asian J. Org. Chem. 2018; 7: 1429 3d Reddy CR, Jithender E, Krishna G, Reddy GV, Jagadeesh B. Org. Biomol. Chem. 2011; 9: 3940 4a Singh R, Nagesh K, Yugandhar D, Prasanthi AV. G. Org. Lett. 2018; 20: 4848 4b Marchese AD, Larin EM, Mirabi B, Lautens M. Acc. Chem. Res. 2020; 53: 1605 5a Hennessy EJ, Buchwald SL. J. Am. Chem. Soc. 2003; 125: 12084 5b Li Y, Wang K, Ping Y, Wang Y, Kong W. Org. Lett. 2018; 20: 921 5c Liu C, Liu D, Zhang W, Zhou L, Lei A. Org. Lett. 2013; 15: 6166 5d Yamamoto K, Qureshi Z, Tsoung J, Pisella G, Lautens M. Org. Lett. 2016; 18: 4954 6a Wu Z.-J, Xu H.-C. Angew. Chem. Int. Ed. 2017; 56: 4734 6b Ju X, Liang Y, Jia P, Li W, Yu W. Org. Biomol. Chem. 2012; 10: 498 6c Wei W.-T, Zhou M.-B, Fan J.-H, Liu W, Song R.-J, Liu Y, Hu M, Xie P, Li J.-H. Angew. Chem. Int. Ed. 2013; 52: 3638 6d Meng Y, Guo L.-N, Wang H, Duan X.-H. Chem. Commun. 2013; 49: 7540 6e Wang J.-Y, Zhang X, Bao Y, Xu Y.-M, Cheng X.-F, Wang X.-S. Org. Biomol. Chem. 2014; 12: 5582 7 Nykaza TV, Li G, Yang J, Luzung MR, Radosevich AT. Angew. Chem. Int. Ed. 2020; 59: 4505 8a Shelar SV, Argade NP. Org. Biomol. Chem. 2019; 17: 6671 8b Lv J, Zhang-Negrerie D, Deng J, Du Y, Zhao K. J. Org. Chem. 2014; 79: 1111 8c Jiang X, Zheng C, Lei L, Lin K, Yu C. Eur. J. Org. Chem. 2018; 2018: 1437 8d Hartmann M, Streb C. J. Porous Mater. 2006; 13: 347 8e van Deurzen MP. J, van Rantwijk F, Sheldon RA. J. Mol. Catal. B: Enzym. 1996; 2: 33 8f Takeuchi Y, Tarui T, Shibata N. Org. Lett. 2000; 2: 639 8g Jiang X, Yang J, Zhang F, Yu P, Yi P, Sun Y, Wang Y. Org. Lett. 2016; 18: 3154 9 Dighe SU, Juliá F, Luridiana A, Douglas JJ, Leonori D. Nature 2020; 584: 75 10a Koizumi Y, Jin X, Yatabe T, Miyazaki R, Hasegawa J.-Y, Nozaki K, Mizuno N, Yamaguchi K. Angew. Chem. Int. Ed. 2019; 58: 10893 10b Shimomoto Y, Matsubara R, Hayashi M. Adv. Synth. Catal. 2018; 360: 3297 10c Girard SA, Hu X, Knauber T, Zhou F, Simon M.-O, Deng G.-J, Li C.-J. Org. Lett. 2012; 14: 5606 10d Hajra A, Wei Y, Yoshikai N. Org. Lett. 2012; 14: 5488 10e Ichitsuka T, Komatsuzaki S, Masuda K, Koumura N, Sato K, Kobayashi S. Chem. Eur. J. 2021; in press; DOI: 10f Girard SA, Huang H, Zhou F, Deng G.-J, Li C.-J. Org. Chem. Front. 2015; 2: 279 11 Maeda K, Matsubara R, Hayashi M. Org. Lett. 2021; 23: 1530 12 Nicholas AM. d. P, Arnold DR. Can. J. Chem. 1982; 60: 2165 13 Pirnot MT, Rankic DA, Martin DB. C, MacMillan DW. C. Science 2013; 339: 1593 14a Gridnev AA, Ittel SD. Chem. Rev. 2001; 101: 3611 14b Dempsey JL, Brunschwig BS, Winkler JR, Gray HB. Acc. Chem. Res. 2009; 42: 1995 15 Manolis AS, Deering TF, Cameron J, Markestes NA. III. Clin. Cardiol. 1990; 13: 349 16a Yang BH, Buchwald SL. Org. Lett. 1999; 1: 35 16b Tian X, Li X, Duan S, Du Y, Liu T, Fang Y, Chen W, Zhang H, Li M, Yang X. Adv. Synth. Catal. 2021; 363: 1050 16c Kuang Z, Li B, Song Q. Chem. Commun. 2018; 54: 34 16d Zhang L, Qureshi Z, Sonaglia L, Lautens M. Angew. Chem. Int. Ed. 2014; 53: 13850 17 See SI for more information. 18 Liu L, Song L, Guo Y, Min D, Shi T, Zhang W. Tetrahedron 2018; 74: 354 19 Poondra RR, Turner NJ. Org. Lett. 2005; 7: 863 20 Sumiyoshi T, Enomoto T, Takai K, Takahashi Y, Konishi Y, Uruno Y, Tojo K, Suwa A, Matsuda H, Nakako T, Sakai M, Kitamura A, Uematsu Y, Kiyoshi A. ACS Med. Chem. Lett. 2013; 4: 244 Zusatzmaterial Zusatzmaterial Supporting Information (PDF)