Synthesis 2022; 54(04): 1108-1114
DOI: 10.1055/a-1653-2685
feature

SN2′ Defluorinative Allylation of Trifluoromethylalkenes with Allylsilanes

Meng-Meng Sun
,
Haidong Liu
,
Chuan Zhu
,
Chao Feng
This work was supported by the National Natural Science Foundation of China (21801131 & 21871138), the ‘Thousand Young Talents Program’ of China, and the ‘Jiangsu Specially-Appointed Professor Plan’.


Abstract

An SN2′ defluorinative allylation of trifluoromethylalkenes with readily available allylsilanes to access homoallyl gem-difluoroalkenes is reported. The reaction is triggered by a catalytic amount of TBAF, with the extruded fluoride in the reaction serving as a sustainable activator for organosilanes. The high efficiency, good functional group tolerance, and mild reaction conditions underline the potential of this method in synthetic chemistry.

Supporting Information



Publication History

Received: 31 August 2021

Accepted after revision: 24 September 2021

Accepted Manuscript online:
24 September 2021

Article published online:
11 November 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For selected examples, see:
    • 1a Lim MH, Kim HO, Moon HR, Chun MW, Jeong LS. Org. Lett. 2002; 4: 529
    • 1b Pan Y, Qiu J, Silverman RB. J. Med. Chem. 2003; 46: 5292
    • 1c Fujii K, Nakamoto Y, Hatano K, Kanetsuki Y. JP Patent 2006016331 A, 2006

      For selected examples, see:
    • 2a Ma Q, Wang Y, Tsui GC. Angew. Chem. Int. Ed. 2020; 59: 11293
    • 2b Lu X, Wang Y, Zhang B, Pi J.-J, Wang X.-W, Gong T.-J, Xiao B, Fu Y. J. Am. Chem. Soc. 2017; 139: 12632
    • 2c Sakaguchi H, Uetake Y, Ohashi M, Niwa T, Ogoshi S, Hosoya T. J. Am. Chem. Soc. 2017; 139: 12855
    • 3a Yuan K, Feoktistova T, Cheong PH.-Y, Altman RA. Chem. Sci. 2021; 12: 1363
    • 3b Liu C, Zhu C, Cai Y, Jiang H. Angew. Chem. Int. Ed. 2021; 60: 12038
    • 3c Zubkov MO, Kosobokov MD, Levin VV, Kokorekin VA, Korlyukov AA, Hu J, Dilman AD. Chem. Sci. 2020; 11: 737
    • 3d Zhu C, Song S, Zhou L, Wang D.-X, Feng C, Loh T.-P. Chem. Commun. 2017; 53: 9482

      For a review, see:
    • 4a Liu C, Zeng H, Zhu C, Jiang H. Chem. Commun. 2020; 56: 10442

    • For recent examples, see:
    • 4b Lin TY, Pan Z, Tu Y, Zhu S, Wu H.-H, Liu Y, Li Z, Zhang J. Angew. Chem. Int. Ed. 2020; 59: 22957
    • 4c Liu C, Zhu C, Cai Y, Yang Z, Zeng H, Chen F, Jiang H. Chem. Eur. J. 2020; 26: 1953
  • 5 Fuqua SA, Duncan WG, Silverstein RM. Tetrahedron Lett. 1964; 1461

    • For a review, see:
    • 6a Zhang X, Cao S. Tetrahedron Lett. 2017; 58: 375

    • For recent examples, see:
    • 6b Wang S, Cheng B.-Y, Sršen M, König H. J. Am. Chem. Soc. 2020; 142: 7524
  • 7 Fujita T, Fuchibe K, Ichikawa J. Angew. Chem. Int. Ed. 2019; 58: 390
    • 8a Bégué J.-P, Bonnet-Delpon D, Rock MH. Tetrahedron Lett. 1995; 36: 5003
    • 8b Fuchikami T, Shibata Y, Suzuki Y. Tetrahedron Lett. 1986; 27: 3173
    • 9a Jang YJ, Rose D, Mirabi B, Lautens M. Angew. Chem. Int. Ed. 2018; 57: 16147
    • 9b Zhang C, Lin Z, Zhu Y, Wang C. J. Am. Chem. Soc. 2021; 143: 11602
    • 9c Lan Y, Yang F, Wang C. ACS Catal. 2018; 8: 9245
    • 9d Lin Z, Lan Y, Wang C. ACS Catal. 2019; 9: 775
    • 9e Lu X, Wang X.-X, Gong T.-J, Pi J.-J, He S.-J, Fu Y. Chem. Sci. 2019; 10: 809
    • 9f Kojima R, Akiyama S, Ito H. Angew. Chem. Int. Ed. 2018; 57: 7196
    • 9g Gao P, Yuan C, Zhao Y, Shi Z. Chem 2018; 4: 2201
    • 10a Lang SB, Wiles RJ, Kelly CB, Molander GA. Angew. Chem. Int. Ed. 2017; 56: 15073
    • 10b Yue W.-J, Day CS, Martin R. J. Am. Chem. Soc. 2021; 143: 6395
    • 10c Xia P.-J, Song D, Ye Z.-P, Hu Y.-Z, Xiao J.-A, Xiang H.-Y, Chen X.-Q, Yang H. Angew. Chem. Int. Ed. 2020; 59: 6706
    • 10d Xu W, Jiang H, Leng J, Ong HW, Wu J. Angew. Chem. Int. Ed. 2020; 59: 4009
    • 10e Guo Y.-Q, Wang R, Song H, Liu Y, Wang Q. Org. Lett. 2020; 22: 709
  • 11 Gao X.-T, Zhang Z, Wang X, Tian J.-S, Xie S.-L, Zhou F, Zhou J. Chem. Sci. 2020; 11: 10414
    • 12a Bao W, Kossen H, Schneider U. J. Am. Chem. Soc. 2017; 139: 4362
    • 12b García-Ruiz C, Chen JL.-Y, Sandford C, Feeney K, Lorenzo P, Berionni G, Mayr H, Aggarwal VK. J. Am. Chem. Soc. 2017; 139: 15324
    • 12c Luo C, Bandar JS. J. Am. Chem. Soc. 2019; 141: 14120
    • 12d Mizuno K, Ikeda M, Otsuji Y. Tetrahedron Lett. 1985; 26: 461
  • 13 Zhu C, Sun M.-M, Chen K, Feng C. Angew. Chem. Int. Ed. 2021; 60: 20237
    • 14a Tian P, Feng C, Loh T.-P. Nat. Commun. 2015; 6: 7472
    • 14b Zhou L, Zhu C, Bi P, Feng C. Chem. Sci. 2019; 10: 1114
    • 14c Zhu C, Zhang Y.-F, Liu Z.-Y, Zhou L, Liu H, Feng C. Chem. Sci. 2019; 10: 6721
    • 14d Tang L, Liu Z.-Y, She W, Feng C. Chem. Sci. 2019; 10: 8701
    • 14e Zhu C, Liu Z.-Y, Tang L, Zhang H, Zhang Y.-F, Walsh PJ, Feng C. Nat. Commun. 2020; 11: 4860
  • 15 Kawai M, Onaka M, Izumi Y. Chem. Lett. 1986; 15: 381