Synthesis 2022; 54(03): 555-564
DOI: 10.1055/a-1657-2068
short review

Cooperative Rh(II)/Pd(0) Dual Catalysis for the Synthesis of Carbo- and Heterocyclic Compounds

,
Yu Lim Lee
,
Kyu In Choi
,
Sang-gi Lee
This work was made possible by the support of the National Research Foundation of Korea (NRF-2019R1A2B5B02069449 and NRF-2021R1A4A3022415).


Abstract

Dual transition-metal catalysis has been introduced as a robust tool to synthesize a diverse range of organic compounds that cannot to be accessed by traditional single-metal catalysis. In this context, we have recently developed cooperative Rh(II)/Pd(0) dual catalytic systems that have been utilized for the preparation of heterocyclic compounds through the reaction between Rh(II)-carbenoid and π-allyl Pd(II)-complex intermediates in either synergistic or tandem relay catalysis. In synergistic Rh(II)/Pd(0) dual catalysis, the two reactive intermediates are generated simultaneously, which then undergo formal [6+3] dipolar cycloaddition to afford medium-sized heterocyclic compounds. On the other hand, tandem relay dual catalysis can be enabled through judicious choice of reaction parameters, which proceed through the insertion of Rh(II)-carbenoid into O–H or C–H bonds, followed by Pd(0)-catalyzed allylation to provide allylated benzo-fused cyclic compounds or chiral β-lactam derivatives.

1 Introduction

2 Synergistic Dual Rh(II)/Pd(0)-Catalyzed Dipolar [6+3]-Cycloaddition for the Synthesis of 1,4-Oxazonines

3 Tandem Relay Dual Rh(II)/Pd(0) Catalysis for the Synthesis of 2-Aminoindanones

4 Asymmetric Tandem Relay Dual Rh(II)/Pd(0) Catalysis for the Synthesis of α-Quaternary Chiral β-Lactams

5 Tandem Relay Dual Rh(II)/Pd(0) Catalysis for the Synthesis of α-Quaternary Indolinones and Benzofuranones

6 Conclusion



Publication History

Received: 05 August 2021

Accepted after revision: 29 September 2021

Accepted Manuscript online:
29 September 2021

Article published online:
15 November 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Dual Catalysis in Organic Synthesis . In Science of Synthesis, Vol. 1. Molander GA. Georg Thieme Verlag KG; Stuttgart: 2019
    • 1b Romiti F, del Pozo J, Paioti PH. S, Gonsales SA, Li X, Hartrampf FW. W, Hoveyda AH. J. Am. Chem. Soc. 2019; 141: 17952
    • 1c Kim UB, Jung DJ, Jeon HJ, Rathwell K, Lee S.-g. Chem. Rev. 2020; 120: 13382
    • 1d Martinez S, Veth L, Lainer B, Dydio P. ACS Catal. 2021; 11: 3891
    • 3a Shi Y, Roth KE, Ramgrn SD, Blum SA. J. Am. Chem. Soc. 2009; 131: 18022
    • 3b Al-Amin M, Roth KE, Blum SA. ACS Catal. 2014; 4: 622
  • 4 Shi Y, Peterson SM, Haberaecker WW. III, Blum SA. J. Am. Chem. Soc. 2008; 130: 2168
    • 5a Chen Z.-S, Huang L.-Z, Jeon HJ, Xuan Z, Lee S.-g. ACS Catal. 2016; 6: 4914
    • 5b Lee KR, Ahn S, Lee S.-g. Org. Lett. 2021; 23: 3735
    • 5c Lee KR, Jung DJ, Ahn S, Kim JW, Lee S.-g. Org. Biomol. Chem. 2021; 19: 5093
    • 5d Huang L.-Z, Xuan Z, Jeon HJ, Du Z.-T, Kim JH, Lee S.-g. ACS Catal. 2018; 8: 7340
    • 5e Lee YL, Lee KR, Xuan Z, Lee S.-g. Bull. Korean Chem. Soc. 2021; 42: 537
    • 6a Yet L. Chem. Rev. 2000; 100: 2963
    • 6b Hussain A, Yousuf SK, Mukherjee D. RSC Adv. 2014; 4: 43241
    • 7a Rong Z.-Q, Yang L.-C, Liu S, Yu Z, Wang Y.-N, Tan ZY, Huang R.-Z, Lan Y, Zhao Y. J. Am. Chem. Soc. 2017; 139: 15304
    • 7b Uno H, Punna N, Tokunaga E, Shiro M, Shibata N. Angew. Chem. Int. Ed. 2020; 59: 8187
    • 7c Uno H, Kawai K, Shiro M, Shibata N. ACS Catal. 2020; 10: 14117
    • 8a Reyes E, Uria U, Carrillo L, Vicario JL. Tetrahedron 2014; 70: 9461
    • 8b Rizzo A, Harutyunyan SR. Org. Biomol. Chem. 2014; 12: 6570
    • 8c Fleming JJ, McReynolds MD, Du Bois J. J. Am. Chem. Soc. 2007; 129: 9964
    • 8d Seiple IB, Su S, Young IS, Lewis CA, Yamaguchi J, Baran PS. Angew. Chem. Int. Ed. 2010; 49: 1095
    • 8e Tian C, Lei X, Wang Y, Dong Z, Liu G, Tang Y. Angew. Chem. Int. Ed. 2016; 55: 6992

      For selected examples on transannular carbonyl–ene reactions, see:
    • 9a Warrington JM, Yap GP. A, Barriault L. Org. Lett. 2000; 2: 663
    • 9b Rajapaksa NS, Jacobsen EN. Org. Lett. 2013; 15: 4238
    • 9c Riehl PS, Nasrallah DJ, Schindler CS. Chem. Sci. 2019; 10: 10267
  • 10 Miura T, Tanaka T, Biyajima T, Yada A, Murakami M. Angew. Chem. Int. Ed. 2013; 52: 3883
    • 11a Kim SH, Park SH, Choi JH, Chang S. Chem. Asian J. 2011; 6: 2618
    • 11b Lu P, Wang Y. Chem. Soc. Rev. 2012; 41: 5687
    • 11c Jiang J, Sun R, Wang Q, Tang X.-Y, Shi M. Chem. Commun. 2015; 51: 16968
    • 12a Tahlan K, Jesen SE. J. Antibiot. 2013; 66: 401
    • 12b Böttcher T, Sieber SA. Med. Chem. Commun. 2012; 3: 408
    • 12c Bari SS, Bhalla A. Top. Heterocycl. Chem. 2010; 22: 49
    • 13a Xu X, Deng Y, Yim DN, Zavalij PY, Doyle MP. Chem. Sci. 2015; 6: 2196
    • 13b Candeias NR, Carias C, Gomes LF. R, André V, Duarte MT, Gois PM. P, Afonso CA. M. Adv. Synth. Catal. 2012; 354: 2921
    • 13c Chen S, Salo EC, Wheeler KA, Kerrigan NJ. Org. Lett. 2012; 14: 1784
    • 13d Berlin JM, Fu GC. Angew. Chem. Int. Ed. 2008; 47: 7048
  • 14 Yu X, Zhang T, Liu J, Li X. Synthesis 2021; 53: 4341
    • 15a Pertino MW, Theoduloz C, Rodríguez JA, Yáñez T, Lazo V, Schmeda-Hirschmann G. J. Nat. Prod. 2010; 73: 639
    • 15b Nicolaou KC, Wu TR, Kang Q, Chen DY.-K. Angew. Chem. Int. Ed. 2009; 48: 3440
    • 15c Ge HM, Zhu CH, Shi DH, Zhang LD, Xie DQ, Yang J, Ng SW, Tan RX. Chem. Eur. J. 2008; 14: 376
    • 15d Galliford CV, Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748
    • 15e Marti C, Carreira EM. Eur. J. Org. Chem. 2003; 2209

      For selected examples on indolin-2-one synthesis, see:
    • 16a Chen J, Wen X, Wang Y, Du F, Cai L, Peng Y. Org. Lett. 2016; 18: 4336
    • 16b Shirai T, Ito H, Yamamoto Y. Angew. Chem. Int. Ed. 2014; 53: 2658
    • 16c Wei W.-T, Zhou M.-B, Fan J.-H, Liu W, Song R.-J, Liu Y, Hu M, Xie P, Li J.-H. Angew. Chem. Int. Ed. 2013; 52: 3638
    • 16d Mu X, Wu T, Wang H.-y, Guo Y.-l, Liu G. J. Am. Chem. Soc. 2012; 134: 878

      For selected examples on benzofuran-2-one synthesis, see:
    • 17a Peng X, Hu Z, Zhang J, Ning W, Zhang S, Dong C, Shi X, Zhou H.-B. Chem. Commun. 2019; 55: 14570
    • 17b Yang C, Zhang E.-G, Li X, Cheng J.-P. Angew. Chem. Int. Ed. 2016; 55: 6506
    • 17c Ohmatsu K, Ito M, Kunieda T, Ooi T. J. Am. Chem. Soc. 2013; 135: 590