Synthesis 2022; 54(06): 1503-1517
DOI: 10.1055/a-1667-3648
short review

Integration of C-Acylation in the Solid-Phase Synthesis of Peptides and Peptidomimetics Employing Meldrum’s Acid, Phosphorus, and Sulfur Ylides

Ahsanullah Ahsanullah
a   Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
,
Abbas Hassan
a   Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
,
Farzana L. Ansari
a   Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
,
b   Institut für Pharmazie, Medizinische Chemie, Freie Universität Berlin, Königin-Luise-Strasse 2+4, 14195 Berlin, Germany
› Author Affiliations
This work was funded by the Deutsche Forschungsgemeinschaft (DFG) and the Higher Education Commission of Pakistan (HEC).


Abstract

The modification of native peptides to peptidomimetics is an important goal in medicinal chemistry and requires, in many cases, the integration of C-acylation steps involving amino acids with classical peptide synthesis. Many classical C-acylation protocols involving Claisen condensations and the use of ylides are not compatible with peptide synthesis, mostly due to the requirements for strong bases leading to epimerization or deprotection of peptides. Meldrum’s acid as well as several specific phosphorus and sulfur ylides, however, are acidic enough to provide reactive C-nucleophiles under mildly basic conditions tolerated during peptide synthesis. This review provides an overview of peptide-compatible C-acylations using Meldrum’s acid and phosphorus and sulfur ylides, and their application in the medicinal chemistry of peptides.

1 Introduction

2 C-Acylation of Meldrum’s Acid

2.1 C-Acylation of Meldrum’s Acid on Solid Phase

3 Ylides as Substrates for C-Acylation

3.1 C-Acylation of Phosphorus Ylides in Solution Phase

3.2 C-Acylation of Solid-Supported Phosphorus Ylides

3.3 C-Acylation of Sulfur Ylides

3.4 C-Acylation of Solid-Supported Sulfur Ylides

4 Miscellaneous Ylides as Acyl Anion Equivalents

5 Summary



Publication History

Received: 22 June 2021

Accepted after revision: 12 October 2021

Accepted Manuscript online:
12 October 2021

Article published online:
18 January 2022

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Sarratosa F. Stud. Org. Chem. 1990; 41: 24
  • 2 Ivanov AS. Chem. Soc. Rev. 2008; 37: 789
  • 3 Raillard SP, Chen W, Sullivan E, Bajjalieh W, Bhandari A, Baer TA. J. Comb. Chem. 2002; 4: 470
  • 4 Shimkin AA, Shirinian VZ, Mailian AK, Lonshakov DV, Gorokhov VV, Krayushkin MM. Russ. Chem. Bull. 2011; 60: 139
  • 5 Oettmeier W, Jäger J, Masson K. Biochim. Biophys. Acta 2006; 1757: 727
  • 6 Emtenäs H, Soto G, Hultgren SJ, Marshall GR, Almqvist F. Org. Lett. 2000; 2: 2065
  • 7 Emtenäs H, Carlsson M, Pinkner JS, Hultgren SJ, Almqvist F. Org. Biomol. Chem. 2003; 1: 1308
  • 8 Shah U, Chackalamannil S, Ganguly AK, Chelliah M, Kolotuchin S, Buevich A, McPhail A. J. Am. Chem. Soc. 2006; 128: 12654
  • 9 Tambar UK, Ebner DC, Stoltz BM. J. Am. Chem. Soc. 2006; 128: 11752
  • 10 Piva O. J. Org. Chem. 1995; 60: 7879
  • 11 Bunce RA, Schilling CL. III, Rivera M. J. Labelled Compd. Radiopharm. 1997; 39: 665
  • 12 Ragoussis V, Liapis M, Ragoussis N. J. Chem. Soc., Perkin Trans. 1 1990; 2545
  • 13 Sakai R, Stroh JG, Sullins DW, Rinehart KL. J. Am. Chem. Soc. 1995; 117: 3734
  • 14 Hamada Y, Kondo Y, Shibata M, Shioiri T. J. Am. Chem. Soc. 1989; 111: 669
  • 15 Jouin P, Castro B, Nisato D. J. Chem. Soc., Perkin Trans. 1 1987; 1177
  • 16 Weber L, Iazia P, Biringer G, Barbier P. Synlett 1998; 1156
  • 17 Romoff T, Ma L, Campbell D. Synlett 1998; 1341
  • 18 Pettit GR, Herald DL, Singh SB, Thonton TJ, Mullaney JT. J. Am. Chem. Soc. 1991; 113: 6692
  • 19 Pettit GR, Thornton TJ, Mullaney JT, Boyd MR, Herald DL, Singh SB, Flahive EJ. Tetrahedron 1994; 50: 12097
  • 20 Li B, Franck RW. Bioorg. Med. Chem. Lett. 1999; 9: 2629
  • 21 Decicco CP, Grover P. J. Org. Chem. 1996; 61: 3534
  • 22 Rou F, Galeotti N, Jouin P, Cros S, Zenke G. Bioorg. Med. Chem. Lett. 1994; 4: 1947
  • 23 Tanaka A, Usuki T. Tetrahedron Lett. 2011; 52: 5036
  • 24 Liu Z, Ruan X, Huang X. Bioorg. Med. Chem. Lett. 2003; 13: 2505
  • 25 Li WR, Lin ST, Hsu NM, Chern MS. J. Org. Chem. 2002; 67: 4702
  • 26 Al-Gharabli SI, Rademann J. J. Pept. Sci. 2004; 10: 121
  • 27 Al-Gharabli SI, Khanfar M, Rademann J. Peptides 2004, Proceedings Volume of the 28th European Peptide Society Symposium, Prague, Czech Republic, Sept 5–10, 2004. Flegel M, Fridkin M, Gilon C, Slaninova J. Kenes Int; Israel: 2005: 184
    • 28a Michaelis A, Gimborn HV. Chem. Ber. 1894; 27: 272
    • 28b Wittig G, Geissler G. Liebigs Ann. Chem. 1953; 580: 44
    • 28c Wittig G. Angew. Chem. 1956; 68: 505
    • 28d Märkl G. Ber. Dtsch. Chem. Ges. 1961; 94: 3005
    • 28e Bestmann HJ, Sommer N, Staab HA. Angew. Chem. Int. Ed. 1962; 1: 270 ; Angew. Chem. 1962, 74, 293
    • 28f Bestmann HJ, Hartung H. Angew. Chem. Int. Ed. 1963; 2: 214 ; Angew. Chem. 1963, 75, 297
  • 29 Wasserman HH, Cook JD, Fukuyama JM, Rotello VM. Tetrahedron Lett. 1989; 30: 1721
  • 30 Wasserman HH, Kuo G. Tetrahedron Lett. 1989; 30: 873
  • 31 Wasserman HH, Rotello VM, Krause GB. Tetrahedron Lett. 1992; 33: 5419
  • 32 Wasserman HH, Ennis DS, Power PL, Ross MJ, Gomes B. J. Org. Chem. 1993; 58: 4785
  • 33 Wasserman HH, Chen J, Xia MJ. J. Am. Chem. Soc. 1999; 121: 1401
  • 34 Wasserman HH, Chen JH, Xia M. Helv. Chim. Acta 2000; 83: 2607
  • 35 Wasserman HH, Baldino CM. Bioorg. Med. Chem. Lett. 1995; 5: 3033
  • 36 Wasserman HH, Petersen AK, Xia M. Tetrahedron 2003; 59: 6771
  • 37 Wasserman HH, Wang J. J. Org. Chem. 1998; 63: 5581
  • 38 Wasserman HH, Petersen AK. J. Org. Chem. 1997; 62: 8972
  • 39 Wasserman HH, Parr J. Acc. Chem. Res. 2004; 37: 687
  • 40 Wasserman HH, Ennis DS, Blum CA, Rotello VM. Tetrahedron Lett. 1992; 33: 6003
  • 41 Weik S, Rademann J. Angew. Chem. Int. Ed. 2003; 42: 2491
  • 42 Weik S, Luksch T, Evers A, Bottcher J, Sotriffer CA, Hasilik A, Loffler HG, Klebe G, Rademann J. ChemMedChem 2006; 1: 445
  • 43 Papanikos A, Meldal M. J. Comb. Chem. 2004; 6: 181
  • 44 Hellmuth K, Grosskopf S, Lum CT, Würtele M, Röder N, Kries JP, Rosario M, Rademann J, Birchmeier W. Proc. Natl. Acad. Sci. U.S.A. 2008; 105: 7275
  • 45 Grosskopf S, Eckert C, Arkona C, Radetzki S, Böhm K, Heinemann U, Wolber G, von Kries J, Birchmeier W, Rademann J. ChemMedChem 2015; 10: 815
  • 46 Russ DA, Heyne GJ, Ciecielski KJ, Berninger A, Kabacaoglu D, Görgülü K, Dantes Z, Wörmann SJ, Diakopoulos KN, Karpathaki AF, Kowalska M, Kaya-Aksoy E, Song L, van der Laan EA. Z, López-Alberca MP, Nazaré M, Reichert M, Saur D, Erkan MM, Hopt UT, Sainz BJr, Birchmeier W, Schmid RM, Lesina M, Algül H. Nat. Med. 2018; 24: 954
  • 47 El-Dahshan A, Weik S, Rademann J. Org. Lett. 2007; 9: 949
  • 48 El-Dahshan A, Ahsanullah Ahsanullah, Rademann J. Biopolymers 2010; 94: 220
  • 49 El-Dahshan A, Nazir S, Ahsanullah Ahsanullah, Ansari FL, Rademann J. Eur. J. Org. Chem. 2011; 4: 730
  • 50 Schmidt MF, Isidro-Llobet A, Lisurek M, El-Dahshan A, Tan J, Hilgenfeld R, Rademann J. Angew. Chem. Int. Ed. 2008; 47: 3275
  • 51 Schmidt MF, El-Dahshan A, Keller S, Rademann J. Angew. Chem. Int. Ed. 2009; 48: 6346
  • 52 Burda E, Rademann J. Nat. Commun. 2014; 5: 5170
  • 53 Tornøe WC, Christensen C, Meldal M. J. Org. Chem. 2002; 67: 3057
  • 54 Kolb HC, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004
  • 55 Boren BC, Narayan S, Rasmussen LK, Zhang L, Zhao H, Lin Z, Jia G, Fokin VV. J. Am. Chem. Soc. 2008; 130: 8923
  • 56 Ahsanullah Ahsanullah, Schmieder P, Kühne R, Rademann J. Angew. Chem. Int. Ed. 2009; 48: 5042
  • 57 Ahsanullah Ahsanullah, Rademann J. Angew. Chem. Int. Ed. 2010; 49: 5378
  • 58 Ahsanullah Ahsanullah, Al-Gharabli SI, Rademann J. Org. Lett. 2012; 14: 14
  • 59 Holland-Nell K, Fernández-Bachiller MI, Ahsanullah Ahsanullah, Rademann J. Org. Lett. 2014; 16: 4428
  • 60 Masri E, Ahsanullah Ahsanullah, Accorsi M, Rademann J. Org. Lett. 2020; 22: 6976
  • 61 Masri, E.; Rademann, J. unpublished results.
  • 62 Corey EJ, Chaykovsky M. J. Am. Chem. Soc. 1962; 84: 867
  • 63 Wakui T, Yamaguchi H, Motoki S. Bull. Chem. Soc. Jpn. 1977; 50: 1645
  • 64 Lollar CT, Krenek KM, Bruemmer KJ, Lippert AR. Org. Biomol. Chem. 2014; 12: 406
  • 65 Ju L, Lippert AR, Bode JW. J. Am. Chem. Soc. 2008; 130: 4253
  • 66 Ju L, Bode JW. Org. Biomol. Chem. 2009; 7: 2259
  • 67 Fukuzumi T, Ju L, Bode JW. Org. Biomol. Chem. 2012; 10: 5837
  • 68 Ogunkoya AO, Pattabiraman VR, Bode JW. Angew. Chem. Int. Ed. 2012; 51: 9693
  • 69 Huang Y.-L, Frey R, Juarez-Garcia ME, Bode JW. Heterocycles 2012; 84: 1179
  • 70 Wu J, Ruiz-Rodríguez J, Comstock JM, Dong JZ, Bode JW. Chem. Sci. 2011; 2: 1976
  • 71 Murar CE, Ninomiya M, Shimura S, Boyman O, Bode JW. Angew. Chem. Int. Ed. 2020; 59: 8425
  • 72 Zhang Y, Hirota T, Kuwata K, Oishi S, Gramani SG, Bode JW. J. Am. Chem. Soc. 2019; 141: 14742
  • 73 Baldauf S, Schauenburg D, Bode JW. Angew. Chem. Int. Ed. 2019; 58: 12599
  • 74 Boross GN, Shimura S, Besenius M, Tennagels N, Rossen K, Wagner M, Bode JW. Chem. Sci. 2018; 9: 8388
  • 75 Harmand TJ, Pattabiraman VR, Bode JW. Angew. Chem. Int. Ed. 2017; 56: 12639
  • 76 He C, Kulkarni S, Thaud F, Bode JW. Angew. Chem. Int. Ed. 2015; 54: 12996
  • 77 Neumann K, Farnung J, Baldauf S, Bode JW. Nat. Commun. 2020; 11: 982
  • 78 Wang Y, Chen Z, Mi A, Hu W. Chem. Commun. 2004; 2486
  • 79 Briere J.-F, Takada H, Metzner P. Phosphorus, Sulfur Silicon Relat. Elem. 2005; 180: 965