Synthesis
DOI: 10.1055/a-1677-5971
short review

Alkylation Reactions with Alkylsulfonium Salts

Ze-Yu Tian
a  School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. of China
b  School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. of China
,
Yu Ma
b  School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. of China
,
a  School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. of China
b  School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. of China
› Author Affiliations
We thank Wuhan University of Technology, the ‘Hundred Talent’ Program of Hubei Province (China), and the Fundamental Research Funds for the Central Universities (2019-YB-002 and 2020-YB-003) for financial support.


Abstract

The application of alkylsulfonium salts as alkyl-transfer reagents in organic synthesis has reemerged over the past few years. Numerous heteroatom- and carbon-centered nucleophiles, alkenes, arenes, alkynes, organometallic reagents, and others are readily alkylated by alkylsulfonium salts under mild conditions. The reactions feature convenience, high efficiency, readily accessible and structurally diversified alkylation reagents, good functional group tolerance, and a wide range of substrate types, allowing the facile synthesis of various useful organic molecules from commercially available building blocks. This review summarizes alkylation reactions using either isolated or in situ formed alkylsulfonium salts via nucleophilic substitution, transition-metal-catalyzed reactions, and photoredox processes.

1 Introduction

2 General Methods for the Synthesis of Alkylsulfonium Salts

3 Electrophilic Alkylation Using Alkylsulfonium Salts

4 Transition-Metal-Catalyzed Alkylation Using Alkylsulfonium Salts

5 Photoredox-Catalyzed Alkylation Using Alkylsulfonium Salts

6 Conclusion



Publication History

Received: 30 September 2021

Accepted after revision: 25 October 2021

Publication Date:
25 October 2021 (online)

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 2a Huang Y, Gao Y, He W, Wang Z, Li W, Lin A, Xu J, Tanabe G, Muraoka O, Wu X, Xie W. Angew. Chem. Int. Ed. 2019; 58: 6400
    • 2b Quadri M, Stokes C, Gulsevin A, Felts AC. J, Abboud KA, Papke RL, Horenstein NA. J. Med. Chem. 2017; 60: 7928

      Selected examples:
    • 3a Shimomura O, Tomita I, Endo T. J. Polym. Sci., Part A: Polym. Chem. 2001; 39: 3928
    • 3b Shiraishi Y, Tachibana K, Hirai T, Komasawa I. Ind. Eng. Chem. Res. 2002; 41: 5554
    • 3c Nakano K, Iwasa S, Maeda K, Hasegawa E. J. Photopolym. Sci. Technol. 2001; 14: 357
    • 3d Wu X, Malval J, Wan D, Jin M. Dyes Pigm. 2016; 132: 128
    • 3e Imamura R, Mori H. Biomacromolecules 2019; 20: 904
    • 3f Zhu D, Yan H, Liu X, Xiang J, Zhou Z, Tang J, Liu X, Shen Y. Adv. Funct. Mater. 2017; 27: 1606826
    • 3g Matsumoto H, Matsuda T, Miyazaki Y. Chem. Lett. 2000; 29: 1430
    • 3h Kaneko S, Kumatabara Y, Shimizu S, Maruoka K, Shirakawa S. Chem. Commun. 2017; 53: 119
    • 3i Yi L, Shi J, Gao S, Li S, Niu C, Xi Z. Tetrahedron Lett. 2009; 50: 759
    • 4a Zhang Q, van der Donk WA, Liu W. Acc. Chem. Res. 2012; 45: 555
    • 4b Salvatore F, Borek E, Zappia V, Williams-Ashman HG, Schlenk F. The Biochemistry of Adenosylmethionine . Columbia University Press; New York: 1977
    • 5a Oost R, Neuhaus JD, Merad J, Maulide N. Modern Ylide Chemistry . In Structure and Bonding, Vol. 177. Gessner VH. Springer; Cham: 2017: 73-115
    • 5b Lu L.-Q, Li T.-R, Wang Q, Xiao W.-J. Chem. Soc. Rev. 2017; 46: 4135
    • 5c Lin J.-H, Xiao J.-C. Acc. Chem. Res. 2020; 53: 1498
    • 5d Yanagi T, Nogi K, Yorimitsu H. Tetrahedron Lett. 2018; 59: 2951
    • 5e Zhang Y, Wang J. Coord. Chem. Rev. 2010; 254: 941
    • 5f Liu Y, Ling Y, Ge H, Lu L, Shen Q. Chin. J. Chem. 2021; 39: 1667
    • 5g Jana S, Guo Y, Koenigs RM. Chem. Eur. J. 2021; 27: 1270
    • 5h Yorimitsu H. Chem. Rec. 2017; 17: 1156
    • 5i Shafir A. Tetrahedron Lett. 2016; 57: 2673
    • 5j Meng L, Zeng J, Wan Q. Synlett 2018; 29: 148
    • 5k Li P. Synlett 2021; 32: 1275
    • 5l Zhang L, Hu M, Peng B. Synlett 2019; 30: 2203

      Selected paper and reviews:
    • 6a Ni C, Hu M, Hu J. Chem. Rev. 2015; 115: 765
    • 6b Wang S.-M, Han J.-B, Zhang C.-P, Qin H.-L, Xiao J.-C. Tetrahedron 2015; 71: 7949
    • 6c Zhang C. Org. Biomol. Chem. 2014; 12: 6580
    • 6d Prakash GK. S, Weber C, Chacko S, Olah GA. Org. Lett. 2007; 9: 1863
    • 6e Lu S.-L, Qin W.-B, Liu J.-J, Huang Y.-Y, Wong HN. C, Liu G.-K. Org. Lett. 2018; 20: 6925
    • 6f Melngaile R, Veliks J. Synthesis 2021; 53: 4549
    • 6g Koike T, Akita M. Acc. Chem. Res. 2016; 49: 1937

      Selected examples:
    • 7a Wang D, Carlton CG, Tayu M, McDouall JJ. W, Perry GJ. P, Procter DJ. Angew. Chem. Int. Ed. 2020; 59: 15918
    • 7b Faizi DJ, Davis AJ, Meany FB, Blum SA. Angew. Chem. Int. Ed. 2016; 55: 14286
    • 7c Luo K, Yang W.-C, Wei K, Liu Y, Wang J.-K, Wu L. Org. Lett. 2019; 21: 7851
    • 7d Yang K, Zhang H, Niu B, Tang T, Ge H. Eur. J. Org. Chem. 2018; 5520
    • 7e Zhang Q, Liu X, Xin X, Zhang R, Liang Y, Dong D. Chem. Commun. 2014; 50: 15378
    • 7f Leypold M, D’Angelo KA, Movassaghi M. Org. Lett. 2020; 22: 8802
    • 7g Zhang L, Nagaraju S, Paplal B, Lin Y, Liu S. Eur. J. Org. Chem. 2021; 1365
    • 7h Kawashima H, Yanagi T, Wu C.-C, Nogi K, Yorimitsu H. Org. Lett. 2017; 19: 4552
    • 7i Zhang Z, He P, Du H, Xu J, Li P. J. Org. Chem. 2019; 84: 4517
    • 8a Lou J, Wang Q, Wu P, Wang H, Zhou Y.-G, Yu Z. Chem. Soc. Rev. 2020; 49: 4307
    • 8b Kozhushkov SI, Alcarazo M. Eur. J. Inorg. Chem. 2020; 2020: 2486
    • 8c Fan R, Tan C, Liu Y, Wei Y, Zhao X, Liu X, Tan J, Yoshida H. Chin. Chem. Lett. 2021; 32: 299
    • 8d Péter Á, Perry GJ. P, Procter DJ. Adv. Synth. Catal. 2020; 362: 2135
    • 8e Tian Z.-Y, Hu Y.-T, Teng H.-B, Zhang C.-P. Tetrahedron Lett. 2018; 59: 299
    • 8f Otsuka S, Nogi K, Yorimitsu H. Top. Curr. Chem. 2018; 376: 13
    • 8g Yorimitsu H. Chem. Rec. 2021; 21: 1

      Selected examples:
    • 9a Bosshard H. Helv. Chim. Acta 1972; 55: 37
    • 9b Braun H, Amann A. Angew. Chem. Int. Ed. Engl. 1975; 14: 755
    • 9c Tanikaga R, Hiraki Y, Ono N, Kaji A. J. Chem. Soc., Chem. Commun. 1980; 41
    • 9d Shiraishi Y, Taki Y, Hirai T, Komasawa I. Ind. Eng. Chem. Res. 2001; 40: 1213
    • 9e Song H.-X, Wang S.-M, Wang X.-Y, Han J.-B, Gao Y, Jia S.-J, Zhang C.-P. J. Fluorine Chem. 2016; 192: 131
    • 9f Tian Z.-Y, Zhang C.-P. Chem. Commun. 2019; 55: 11936
    • 9g Altundas B, Kumar CV. S, Fleming FF. ACS Omega 2020; 5: 13384
    • 9h Miyatake K, Yamamoto K, Endo K, Tsuchida E. J. Org. Chem. 1998; 63: 7522

      Selected pioneer works:
    • 10a Yamauchi K, Tanabe T, Kinoshita M. J. Org. Chem. 1979; 44: 638
    • 10b Badet B, Julia M, Ramirez-Muñoz M. Synthesis 1980; 926
    • 10c Coward JK, Sweet WD. J. Org. Chem. 1971; 36: 2337
    • 10d Garst ME, McBride BJ. J. Org. Chem. 1983; 48: 1362
    • 10e Kim S, Park JH, Kim YG, Lee JM. J. Chem. Soc., Chem. Commun. 1993; 1188
    • 10f Liu B, Shine HJ. J. Phys. Org. Chem. 2001; 14: 81
    • 10g Umemura K, Matsuyama H, Watanabe N, Kobayashi M, Kamigata N. J. Org. Chem. 1989; 54: 2374
    • 10h Matsuyama H, Nakamura T, Kamigata N. J. Org. Chem. 1989; 54: 5218
    • 10i Umemura K, Matsuyama H, Kamigata N. Bull. Chem. Soc. Jpn. 1990; 63: 2593
    • 10j Umemura K, Matsuyama H, Kobayashi M, Kamigata N. Bull. Chem. Soc. Jpn. 1989; 62: 3026
    • 10k Uyehara T, Ohnuma T, Saito T, Kato T, Yoshida T, Takahashi K. J. Chem. Soc., Chem. Commun. 1981; 127
    • 10l Kobayashi M, Umemura K, Matsuyama H. Chem. Lett. 1987; 16: 327
    • 10m Butte W, Eilers J, Kirsch M. Anal. Lett. 1982; 15: 841
    • 10n Trost BM, Schinski WL, Chen F, Mantz IB. J. Am. Chem. Soc. 1971; 93: 676
    • 10o Laali KK, Chun J.-H, Okazaki T. J. Org. Chem. 2007; 72: 8383
    • 10p Dorn H. Angew. Chem. Int. Ed. Engl. 1967; 6: 371
    • 10q Hyne JB, Golinkin HS. Can. J. Chem. 1963; 41: 3139
    • 10r Cooper KA, Dhar ML, Hughes ED, Ingold CK, MacNulty BJ, Woolf LI. J. Chem. Soc. 1948; 2043
    • 10s Pickersgill IF, Marchington AP, Rayner CM. J. Chem. Soc., Chem. Commun. 1994; 2597
    • 10t Takuwa T, Onishi JY, Matsuo J.-I, Mukaiyama T. Chem. Lett. 2004; 33: 8
    • 11a Lampard C, Murphy JA, Lewis N. J. Chem. Soc., Chem. Commun. 1993; 295
    • 11b Fletcher RJ, Lampard C, Murphy JA, Lewis N. J. Chem. Soc., Perkin Trans. 1 1995; 623
    • 11c Kizil M, Lampard C, Murphy JA. Tetrahedron Lett. 1996; 37: 2511
    • 11d Murphy JA, Rasheed F, Roome SJ, Lewis N. Chem. Commun. 1996; 737
    • 11e Murphy JA, Rasheed F, Roome SJ, Scott KA, Lewis N. J. Chem. Soc., Perkin Trans. 1 1998; 2331
    • 11f Patro B, Merrett M, Murphy JA, Sherrington DC, Morrison MG. J. T. Tetrahedron Lett. 1999; 40: 7857
    • 11g Patro B, Merrett MC, Makin SD, Murphy JA, Parkes KE. B. Tetrahedron Lett. 2000; 41: 421
    • 11h Bashir N, Murphy JA. Chem. Commun. 2000; 46: 627
    • 11i Callaghan O, Franck X, Murphy JA. Chem. Commun. 1997; 1923
  • 12 Yamauchi K, Hisanaga Y, Kinoshita M. Synthesis 1980; 852
    • 13a Wang M, Zhao Y, Zhao Y, Shi Z. Sci. Adv. 2020; 6: eaba0946
    • 13b Zhang Z, Wen J, Wang M, Yan C.-G, Shi Z. Green Synth. Catal. 2021; 2: 275
    • 13c Aggarwal VK, Harvey JN, Robiette R. Angew. Chem. Int. Ed. 2005; 44: 5468
    • 13d Aggarwal VK, Fang GY, Schmidt AT. J. Am. Chem. Soc. 2005; 127: 1642
    • 13e Fang GY, Wallner OA, Di Blasio N, Ginesta X, Harvey JN, Aggarwal VK. J. Am. Chem. Soc. 2007; 129: 14632
    • 13f Fang GY, Aggarwal VK. Angew. Chem. Int. Ed. 2007; 46: 359
    • 13g He Z, Song F, Sun H, Huang Y. J. Am. Chem. Soc. 2018; 140: 2693
  • 14 Eliel EL, Hutchins RO, Mebane R, Willer RL. J. Org. Chem. 1976; 41: 1052
  • 15 Palmer DC, Taylor EC. J. Org. Chem. 1986; 51: 846
  • 16 Stará IG, Starý I, Tichý M, Závada J, Fiedler P. J. Org. Chem. 1994; 59: 1326
    • 17a Jagannathan S, Forsyth TP, Kettner CA. J. Org. Chem. 2001; 66: 6375
    • 17b Ray FE, Levine R. J. Org. Chem. 1937; 2: 267

      Selected literature:
    • 18a Denmark SE, Vogler T. Chem. Eur. J. 2009; 15: 11737
    • 18b Sromek AW, Gevorgyan V. Top. Curr. Chem. 2007; 274: 77
    • 18c Smit WA, Caple R, Smoliakova IP. Chem. Rev. 1994; 94: 2359
    • 18d Adams, E. J.; Oscarson, S. Dimethyl(methylthio)sulfonium Tetrafluoroborate, In e-EROS Encyclopedia of Reagents for Organic Synthesis [Online]; Wiley & Sons, Posted October 15, 2005.
    • 18e Denmark SE, Collins WR, Cullen MD. J. Am. Chem. Soc. 2009; 131: 3490
    • 18f Trost BM, Shibata T. J. Am. Chem. Soc. 1982; 104: 3225
    • 18g Denmark SE, Jaunet A. J. Am. Chem. Soc. 2013; 135: 6419
    • 18h Roth A, Denmark SE. J. Am. Chem. Soc. 2019; 141: 13767
    • 18i Lin S, Jacobsen EN. Nat. Chem. 2012; 4: 817
    • 18j Luo J, Zhu Z, Liu Y, Zhao X. Org. Lett. 2015; 17: 3620
    • 18k An R, Liao L, Liu X, Song S, Zhao X. Org. Chem. Front. 2018; 5: 3557
    • 18l Shen F, Lu L, Shen Q. Chem. Sci. 2020; 11: 8020
    • 18m Tang M, Han S, Huang S, Huang S, Xie L.-G. Org. Lett. 2020; 22: 9729
    • 19a Matsuyama H, Nakamura T, Iyoda M. Chem. Lett. 1994; 23: 1537
    • 19b Matsuyama H, Nakamura T, Iyoda M. J. Org. Chem. 2000; 65: 4796
    • 20a Miyata O, Fujiwara Y, Ninomiya I, Naito T. J. Chem. Soc., Perkin Trans. 1 1993; 2861
    • 20b Jensen KL, Nielsen DU, Jamison TF. Chem. Eur. J. 2015; 21: 7379
    • 21a Inagaki S, Ukaku M, Chiba A, Takahashi F, Yoshimi Y, Morita T, Kawano T. J. Org. Chem. 2016; 81: 8363
    • 21b Inagaki S, Saito K, Suto S, Aihara H, Sugawara A, Tamura S, Kawano T. J. Org. Chem. 2018; 83: 13834
    • 21c Inagaki S, Nakazato M, Fukuda N, Tamura S, Kawano T. J. Org. Chem. 2017; 82: 5583
    • 21d Inagaki S, Sato A, Sato H, Tamura S, Kawano T. Tetrahedron Lett. 2017; 58: 4872
  • 22 Chen J, Palani V, Hoye TR. J. Am. Chem. Soc. 2016; 138: 4318
    • 23a Zheng T, Tan J, Fan R, Su S, Liu B, Tan C, Xu K. Chem. Commun. 2018; 54: 1303
    • 23b Jian H, Wang Q, Wang W.-H, Li Z.-J, Gu C.-Z, Dai B, He L. Tetrahedron 2018; 74: 2876
  • 24 López-Alled CM, Martin FJ. O, Chen K.-Y, Kociok-Köhn G, James TD, Wenk J, Lewis SE. Tetrahedron 2020; 76: 131700
  • 25 Gupta R, Mandal D, Jaiswal AK, Young RD. Org. Lett. 2021; 23: 1915
    • 26a Shine HJ, Bandlish BK, Mani SR, Padilla AG. J. Org. Chem. 1979; 44: 915
    • 26b Iwai K, Shine HJ. J. Org. Chem. 1981; 46: 271
    • 26c Lee WK, Liu B, Park CW, Shine HJ, Guzman-Jimenez IY, Whitmire KH. J. Org. Chem. 1999; 64: 9206
    • 26d Qian D.-Q, Shine HJ, Guzman-Jimenez IY, Thurston JH, Whitmire KH. J. Org. Chem. 2002; 67: 4030
    • 27a Houmam A, Shukla D, Kraatz H.-B, Wayner DD. M. J. Org. Chem. 1999; 64: 3342
    • 27b Holst DE, Wang DJ, Kim MJ, Guzei IA, Wickens ZK. Nature 2021; 596: 74
    • 28a Yamanaka H, Matsuo J, Kawana A, Mukaiyama T. Chem. Lett. 2003; 32: 626
    • 28b Matsuo J.-I, Yamanaka H, Kawana A, Mukaiyama T. Chem. Lett. 2003; 32: 392
    • 29a Zhang Z, Du H, Xu J, Li P. Chem. Commun. 2016; 52: 11547
    • 29b Luo H, Hu G, Li P. J. Org. Chem. 2019; 84: 10569
    • 30a McGarrigle EM, Myers EL, Illa O, Shaw MA, Riches SL, Aggarwal VK. Chem. Rev. 2007; 107: 5841
    • 30b Rao JS, Brière J.-F, Metzner P, Basavaiah D. Tetrahedron Lett. 2006; 47: 3553
    • 30c Myers EL, de Vries JG, Aggarwal VK. Angew. Chem. Int. Ed. 2007; 46: 1893
    • 30d Kinoshita H, Osamura T, Kinoshita S, Iwamura T, Watanabe S.-I, Kataoka T, Tanabe G, Muraoka O. J. Org. Chem. 2003; 68: 7532
    • 30e Basavaiah D, Muthukumaran K, Sreenivasulu B. Synlett 1999; 1249
    • 30f Bauer T, Tarasiuk J. Tetrahedron: Asymmetry 2001; 12: 1741
    • 30g Park J, Kawatkar S, Kim J.-H, Boons G.-J. Org. Lett. 2007; 9: 1959
    • 30h Kataoka T, Iwama T, Kinoshita H, Tsujiyama S, Tsurukami Y, Iwamura T, Watanabe S. Synlett 1999; 197
    • 30i Kataoka T, Iwama T, Tsujiyama S.-I, Kanematsu K, Iwamura T, Watanabe S.-I. Chem. Lett. 1999; 28: 257
    • 30j Kataoka T, Iwama T, Tsujiyama S.-I, Iwamura T, Watanabe S.-I. Tetrahedron 1998; 54: 11813
    • 30k Kataoka T, Iwama T, Tsujiyama S.-I. Chem. Commun. 1998; 197
    • 30l Walsh LM, Winn CL, Goodman JM. Tetrahedron Lett. 2002; 43: 8219
    • 30m Lee K, Kim H, Miura T, Kiyota K, Kusama H, Kim S, Iwasawa N, Lee PH. J. Am. Chem. Soc. 2003; 125: 9682
    • 30n Kim S, Lee BS, Park JH. Bull. Korean Chem. Soc. 1993; 14: 654
    • 31a Zhang Z, Luo Y, Du H, Xu J, Li P. Chem. Sci. 2019; 10: 5156
    • 31b Zhang Z, Li P. Tetrahedron Lett. 2020; 61: 151707
    • 31c Nenajdenko VG, Vertelezkij PV, Balenkova ES. Synthesis 1997; 351
    • 31d Fernández-Salas JA, Eberhart AJ, Procter DJ. J. Am. Chem. Soc. 2016; 138: 790
    • 31e Hu G, Xu J, Li P. Org. Chem. Front. 2018; 5: 2167
    • 32a Guo W, Luo Y, Sung HH.-Y, Williams ID, Li P, Sun J. J. Am. Chem. Soc. 2020; 142: 14384
    • 32b Fang J, Li T, Ma X, Sun J, Cai L, Chen Q, Liao Z, Meng L, Zeng J, Wan Q. Chin. Chem. Lett. 2021; in press, DOI: DOI: 10.1016/j.cclet.2021.06.069.
    • 33a Kawasaki T, Suzuki H, Sakata I, Nakanishi H, Sakamoto M. Tetrahedron Lett. 1997; 38: 3251
    • 33b Higuchi K, Tayu M, Kawasaki T. Chem. Commun. 2011; 47: 6728
    • 33c Tayu M, Higuchi K, Inaba M, Kawasaki T. Org. Biomol. Chem. 2013; 11: 496
    • 33d Tayu M, Higuchi K, Ishizaki T, Kawasaki T. Org. Lett. 2014; 16: 3613
    • 33e Tayu M, Ishizaki T, Higuchi K, Kawasaki T. Org. Biomol. Chem. 2015; 13: 3863
    • 33f Tayu M, Suzuki Y, Higuchi K, Kawasaki T. Synlett 2016; 27: 941
    • 33g Tayu M, Hui Y, Takeda S, Higuchi K, Saito N, Kawasaki T. Org. Lett. 2017; 19: 6582
    • 33h Tayu M, Nomura K, Kawachi K, Higuchi K, Saito N, Kawasaki T. Chem. Eur. J. 2017; 23: 10925
    • 34a Yoshida S, Yorimitsu H, Oshima K. Org. Lett. 2009; 11: 2185
    • 34b Eberhart AJ, Imbriglio JE, Procter DJ. Org. Lett. 2011; 13: 5882
    • 34c Eberhart AJ, Cicoira C, Procter DJ. Org. Lett. 2013; 15: 3994
    • 34d Eberhart AJ, Procter DJ. Angew. Chem. Int. Ed. 2013; 52: 4008
    • 34e Eberhart AJ, Shrives HJ, Álvarez E, Carrër A, Zhang Y, Procter DJ. Chem. Eur. J. 2015; 21: 7428
    • 34f Eberhart AJ, Shrives H, Zhang Y, Carrër A, Parry AV. S, Tate DJ, Turner ML, Procter DJ. Chem. Sci. 2016; 7: 1281
    • 34g Shrives HJ, Fernández-Salas JA, Hedtke C, Pulis AP, Procter DJ. Nat. Commun. 2017; 8: 14801
    • 34h He Z, Shrives HJ, Fernández-Salas JA, Abengózar A, Neufeld J, Yang K, Pulis AP, Procter DJ. Angew. Chem. Int. Ed. 2018; 57: 5759
    • 34i Šiaučiulis M, Sapmaz S, Pulis AP, Procter DJ. Chem. Sci. 2018; 9: 754
    • 34j Yan J, Pulis AP, Perry GJ. P, Procter DJ. Angew. Chem. Int. Ed. 2019; 58: 15675
    • 35a Badet B, Julia M, Ramirez-Munoz M, Sarrazin A. Tetrahedron 1983; 39: 3111
    • 35b Julia M, Mestdagh H, Rolando C. Tetrahedron 1986; 42: 3841
    • 35c Sedighi M, Çalimsiz S, Lipton MA. J. Org. Chem. 2006; 71: 9517
    • 35d Hostetler MA, Lipton MA. J. Org. Chem. 2018; 83: 7762
  • 36 Srogl J, Allred GD, Liebeskind LS. J. Am. Chem. Soc. 1997; 119: 12376
  • 37 Liu Y.-Y, Yang X.-H, Huang X.-C, Wei W.-T, Song R.-J, Li J.-H. J. Org. Chem. 2013; 78: 10421
  • 38 Simkó DC, Elekes P, Pázmándi V, Novák Z. Org. Lett. 2018; 20: 676
  • 39 He Y, Huang Z, Ma J, Huang F, Lin J, Wang H, Xu B.-H, Zhou Y.-G, Yu Z. Org. Lett. 2021; 23: 6110
    • 40a Minami H, Nogi K, Yorimitsu H. Synlett 2021; 32: 1542
    • 40b Aukland MH, Talbot FJ. T, Fernández-Salas JA, Ball M, Pulis AP, Procter DJ. Angew. Chem. Int. Ed. 2018; 57: 9785
    • 41a Donck S, Baroudi A, Fensterbank L, Goddard J.-P, Ollivier C. Adv. Synth. Catal. 2013; 355: 1477
    • 41b Berger F, Plutschack MB, Riegger J, Yu W, Speicher S, Ho M, Frank N, Ritter T. Nature 2019; 567: 223
    • 41c Ye F, Berger F, Jia H, Ford J, Wortman A, Borgel J, Genicot C, Ritter T. Angew. Chem. Int. Ed. 2019; 58: 14615
    • 41d Sang R, Korkis SE, Su W, Ye F, Engl PS, Berger F, Ritter T. Angew. Chem. Int. Ed. 2019; 58: 16161
    • 41e Engl PS, Haering AP, Berger F, Berger G, Perez-Bitrian A, Ritter T. J. Am. Chem. Soc. 2019; 141: 13346
    • 41f Huang C, Feng J, Ma R, Fang S, Lu T, Tang W, Du D, Gao J. Org. Lett. 2019; 21: 9688
    • 41g Li J, Chen J, Sang R, Ham W.-S, Plutschack MB, Berger F, Chabbra S, Schnegg A, Genicot C, Ritter T. Nat. Chem. 2020; 12: 56
    • 41h Aukland MH, Siauciulis M, West A, Perry GJ. P, Procter DJ. Nat. Catal. 2020; 3: 163
    • 41i Wu J, Wang Z, Chen X.-Y, Wu Y, Wang D, Peng Q, Wang P. Sci. China: Chem. 2020; 63: 336
    • 42a van Bergen TJ, Kellogg RM. J. Am. Chem. Soc. 1976; 98: 1962
    • 42b Beak P, Sullivan TA. J. Am. Chem. Soc. 1982; 104: 4450
    • 42c Kataoka T, Tsutsumi K, Kano K, Mori K, Miyake M, Yokota M, Shimizu H, Hori M. J. Chem. Soc., Perkin Trans. 1 1990; 3017
    • 42d Kataoka T, Iwama T, Shimizu H, Hori M. Phosphorus, Sulfur Silicon Relat. Elem. 1992; 67: 169

      Selected examples:
    • 43a Saeva FD, Morgan BP. J. Am. Chem. Soc. 1984; 106: 4121
    • 43b Andrieux CP, Robert M, Saeva FD, Savéant J.-M. J. Am. Chem. Soc. 1994; 116: 7864
    • 43c Ghanimi A, Simonet J. New J. Chem. 1997; 21: 257
    • 44a Hedstrand DM, Kruizinga WH, Kellogg RM. Tetrahedron Lett. 1978; 17: 1255
    • 44b van Bergen TJ, Hedstrand DM, Kruizinga WH, Kellogg RM. J. Org. Chem. 1979; 44: 4953
    • 44c Saeva FD, Breslin DT, Luss HR. J. Am. Chem. Soc. 1991; 113: 5333
    • 44d Wang X, Saeva FD, Kampmeier JA. J. Am. Chem. Soc. 1999; 121: 4364
    • 44e Kampmeier JA, Hoque AK. M. M, Saeva FD, Wedegaertner DK, Thomsen P, Ullah S, Krake J, Lund T. J. Am. Chem. Soc. 2009; 131: 10015
  • 45 Otsuka S, Nogi K, Rovis T, Yorimitsu H. Chem. Asian J. 2019; 14: 532
  • 46 Varga B, Gonda Z, Tóth BL, Kotschy A, Novák Z. Eur. J. Org. Chem. 2020; 1466
  • 47 Chen C, Wang Z.-J, Lu H, Zhao Y, Shi Z. Nat. Commun. 2021; 12: 4526
  • 48 Chen C, Wang M, Lu H, Zhao B, Shi Z. Angew. Chem. Int. Ed. 2021; 60: 21756
    • 49a Shibutani S, Kodo T, Takeda M, Nagao K, Tokunago N, Sasaki Y, Ohimiya H. J. Am. Chem. Soc. 2020; 142: 1211
    • 49b Nakagawa M, Nagao K, Ikeda Z, Reynolds M, Ibáñez I, Wang J, Tokunaga N, Sasaki Y, Ohmiya H. ChemCatChem 2021; 13: 3930
    • 49c Kobayashi R, Shibutani S, Nagao K, Ikeda Z, Wang J, Ibáñez I, Reynolds M, Sasaki Y, Ohmiya H. Org. Lett. 2021; 23: 5415
    • 49d Shibutani S, Nagao K, Ohmiya H. Org. Lett. 2021; 23: 1798

      Examples of use of aryl alkyl sulfonium salts as arylation reagents rather than alkylation ones:
    • 50a Wang S.-M, Wang X.-Y, Qin H.-L, Zhang C.-P. Chem. Eur. J. 2016; 22: 6542
    • 50b Wang X.-Y, Song H.-X, Wang S.-M, Yang J, Qin H.-L, Jiang X, Zhang C.-P. Tetrahedron 2016; 72: 7606
    • 50c Wang S.-M, Song H.-X, Wang X.-Y, Liu N, Qin H.-L, Zhang C.-P. Chem. Commun. 2016; 52: 11893
    • 50d Tian Z.-Y, Wang S.-M, Jia S.-J, Song H.-X, Zhang C.-P. Org. Lett. 2017; 19: 5454
    • 50e See ref. 9f.
    • 50f Ming X.-X, Wu S, Tian Z.-Y, Song J.-W, Zhang C.-P. Org. Lett. 2021; 23: 6795
    • 50g Minami H, Otsuka S, Nogi K, Yorimitsu H. ACS Catal. 2018; 8: 579
    • 50h Zhao J.-N, Kayumov M, Wang D.-Y, Zhang A. Org. Lett. 2019; 21: 7303