Synthesis
DOI: 10.1055/a-1681-4067
feature

A Flexible Approach to the Synthesis of Type II and III Lepadin Alkaloids

Yue Hu
,
He Gu
,
Yuanliang Jia
,
Guiyin Luo
,
Xiaochuan Chen
This work was supported by grants from the National Natural Science Foundation of China (21172153, 22171190), the Sichuan Science and Technology Program (2019YJ0032) and the Fundamental Research Funds for the Central Universities.


Abstract

A flexible approach to both type II and III lepadin alkaloids is developed for the first time. A key Diels–Alder reaction based on a novel chiral ketolactone dienophile is employed to obtain the desirable all-cis-trisubstituted cyclohexene with excellent regio- and stereoselectivity. As the subsequent closure of the piperidine ring is devised at the N1 and C2 position via an intramolecular nucleophilic amination, the two stereochemical types of lepadin frameworks with the opposite configuration at C2 can be conveniently accessible from a common intermediate. By the approach, lepadins D, E (type II) and F (type III) are stereo­selectively synthesized from ethyl l-lactate.

Supporting Information



Publication History

Received: 24 September 2021

Accepted after revision: 28 October 2021

Publication Date:
28 October 2021 (online)

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Steffan B. Tetrahedron 1991; 47: 8729
  • 2 Kubanek J, Williams DE, De Silva ED, Allen T, Andersen RJ. Tetrahedron Lett. 1995; 36: 6189
  • 3 Tsuneki H, You Y, Toyooka N, Sasaoka T, Nemoto H, Dani JA, Kimura I. Biol. Pharm. Bull. 2005; 28: 611
  • 4 Wright AD, Goclik E, Konig GM, Kaminsky R. J. Med. Chem. 2002; 45: 3067
  • 5 Davis RA, Carroll AR, Quinn RJ. J. Nat. Prod. 2002; 65: 454
  • 6 Ómarsdóttir S, Wang X, Liu HB, Duggan BM, Molinski TF. J. Org. Chem. 2018; 83: 13670
  • 7 For a review, see: Pelss A, Koskinen AM. P. Chem. Heterocycl. Compd. 2013; 49: 226
  • 8 Toyooka N, Okumura M, Takahata H. J. Org. Chem. 1999; 64: 2182
    • 9a Ozawa T, Aoyagi S, Kibayashi C. Org. Lett. 2000; 2: 2955
    • 9b Ozawa T, Aoyagi S, Kibayashi C. J. Org. Chem. 2001; 66: 3338
  • 10 Kalaï C, Tate E, Zard SZ. Chem. Commun. 2002; 13: 1430
  • 11 Barbe G, Charette A. J. Am. Chem. Soc. 2008; 130: 13873
    • 12a Pu X, Ma D. Angew. Chem. Int. Ed. 2004; 43: 4222
    • 12b Pu X, Ma D. J. Org. Chem. 2006; 71: 6562
    • 13a Amat M, Pinto A, Griera R, Bosch J. Chem. Commun. 2013; 49: 11032
    • 13b Amat M, Pinto A, Griera R, Bosch J. Chem. Eur. J. 2015; 21: 12804
  • 14 Li X, Hu L, Jia J, Gu H, Jia Y, Chen X. Org. Lett. 2017; 19: 5372
  • 15 Niethe A, Fischer D, Blechert S. J. Org. Chem. 2008; 73: 3088
    • 16a Li G, Hsung RP, Slafer BW, Sagamanova IK. Org. Lett. 2008; 10: 4991
    • 16b Li G, Hsung RP. Org. Lett. 2009; 11: 4616
    • 17a Jia J, Chen R, Jia Y, Gu H, Zhou Q, Chen X. J. Org. Chem. 2019; 84: 13696
    • 17b Liu X, Jia J, Jia Y, Gu H, Luo J, Chen X. Org. Lett. 2018; 20: 1945
    • 17c Shui F, Jia J, Yang X, Zhou Q, Jiang Y, Chen X. Eur. J. Org. Chem. 2020; 3981
    • 17d Yang X, Yuan P, Shui F, Zhou Y, Chen X. Org. Biomol. Chem. 2019; 17: 4061
    • 17e Yuan P, Liu X, Yang X, Zhang Y, Chen X. J. Org. Chem. 2017; 82: 3692
    • 17f Zhou F, Liu X, Jia Y, Hu Y, Luo G, Chen X. Tetrahedron Lett. 2020; 61: 151960
    • 17g Zhang Y, Liu X, Shui F, Zhou F, Cui J, Chen X. Tetrahedron Lett. 2019; 60: 1784
    • 17h Jiang L, Liu X, Yuan P, Zhang Y, Chen X. J. Nat. Prod. 2017; 80: 805
    • 17i Jia J, Chen R, Liu H, Li X, Jia Y, Chen X. Org. Biomol. Chem. 2016; 14: 7334
    • 17j Liu H, Chen R, Chen X. Org. Biomol. Chem. 2014; 12: 1633
    • 17k Chen R, Liu H, Chen X. J. Nat. Prod. 2013; 76: 1789
    • 17l Liu X, Hu L, Liu X, Jia J, Jiang L, Lin J, Chen X. Org. Biomol. Chem. 2014; 12: 7603
  • 18 For a preliminary report on this part of the work, see: Gu H, Hu Y, Jia Y, Zhou Q, Luo G, Chen X. Chem. Eur. J. 2021; 27: 4141
    • 19a Martin SF, Limberakis C, Burgess LE, Hartmann M. Tetrahedron 1999; 55: 3561
    • 19b Smith ND, Kocienski PJ, Street SD. A. Synthesis 1996; 652
    • 19c Massad SK, Hawkins LD, Baker DC. J. Org. Chem. 1983; 48: 5180
    • 20a Overman LE, Taylor GF, Petty CB, Jessup PJ. J. Org. Chem. 1978; 43: 2164
    • 20b Jessup PJ, Petty CB, Roos J, Overman LE. Org. Synth. 1980; 59: 1
    • 21a Hutchins RO, Milewski CA, Maryanoff BE. J. Am. Chem. Soc. 1973; 95: 3662
    • 21b Caglioti L, Magi M. Tetrahedron 1963; 19: 1127
    • 21c Caglioti L. Tetrahedron 1966; 22: 487
    • 22a Clarke PA, Martin WH. C. Tetrahedron 2005; 61: 5433
    • 22b Monfray J, Gelas-Mialhe Y, Gramain JC, Remuson R. Tetrahedron: Asymmetry 2005; 16: 1025
    • 22c Li M, Zhou P, Roth HF. Synthesis 2007; 55
    • 22d Su D, Wang X, Shao C, Xu J, Zhu R, Hu Y. J. Org. Chem. 2011; 76: 188
    • 23a Yamamura S, Toda M, Hirata Y. Org. Synth. 1988; 6: 289
    • 23b Toda M, Hayashi M, Hirata Y, Yamamura S. Bull. Chem. Soc. Jpn. 1972; 45: 264
    • 23c Vedejs E. Org. React. 1975; 22: 401
    • 24a Xu S, Toyama T, Nakamura J, Arimoto H. Tetrahedron Lett. 2010; 51: 4534
    • 24b Xu S, Unabara D, Uemura D, Arimoto H. Chem. Asian J. 2014; 9: 367
    • 25a Appel R. Angew. Chem., Int. Ed. Engl. 1975; 14: 801
    • 25b Hooz J, Gilani SS. H. Can. J. Chem. 1968; 46: 86
    • 25c Suzuki T, Matsumura R, Oku K, Taguchi K, Hagiwara H, Hoshi T, Ando M. Tetrahedron Lett. 2001; 42: 65
    • 25d Chavan SP, Praveen C, Ramakrishna G, Ramakrishna UR. Tetrahedron Lett. 2004; 45: 6027
    • 26a Bose AK, Lal B. Tetrahedron Lett. 1973; 40: 3937
    • 26b Mihovilovic MD, Müller B, Schulze A, Stanetty P, Kayser MM. Eur. J. Org. Chem. 2003; 2243
    • 27a Ho PT, Davies N. J. Org. Chem. 1984; 49: 3027
    • 27b Bäckvall JE, Renko ZD, Bystrom SE. Tetrahedron Lett. 1987; 28: 4199
  • 28 Manna S, Falck JR. Synth. Commun. 1985; 15. 663
  • 29 Luca LD, Giacomelli G, Porcheddu A. Org. Lett. 2002; 4: 553
    • 30a Anderson NG, Lust DA, Colapret KA, Simpson JH, Malley MF, Gougoutas JZ. J. Org. Chem. 1996; 61: 7955
    • 30b Davis AP, Dresen SD, Lawless LJ. Tetrahedron Lett. 1997; 38: 4305
    • 30c Bosse K, Marineau J, Nason DM, Fliri AJ, Segelstein BE, Desai K, Volkmann RA. Tetrahedron Lett. 2006; 47: 7285
    • 31a Pougny JR, Rollin P. J. Carbohydr. Chem. 1986; 5: 701
    • 31b Galynker I, Still WC. Tetrahedron Lett. 1982; 23: 4461
    • 31c Mori K, Kuwahara S. Liebigs Ann. Chem. 1987; 555
    • 32a Gangamani BP, Kumar VA, Ganesh KN. Tetrahedron 1996; 52: 15017
    • 32b Lonkar PS, Ganesh KN, Kumar VA. Org. Biomol. Chem. 2004; 2: 2604
    • 32c Petersen ML, Vince R. J. Med. Chem. 1991; 34: 2787
    • 32d Tan TH. S, Worthington RJ, Pritchard RG, Morral J, Micklefield J. Org. Biomol. Chem. 2007; 5: 239
    • 32e Loibner H, Zbiral E. Helv. Chim. Acta 1976; 59: 2100
    • 32f Flemer S, Wurthmann A, Mamai A, Madalengoitia JS. J. Org. Chem. 2008; 73: 7593
    • 33a Barton DH. R, McCombie SW. J. Chem. Soc., Perkin Trans. 1 1975; 1574
    • 33b Barton DH. R, Subramanian R. J. Chem. Soc., Perkin Trans. 1 1977; 1718
    • 33c Meimetis LG, Nodwell M, Yang L, Wang X, Wu J, Harwig C, Stenton GR, Mackenzie LF, MacRury T, Patrick BO, Ming-Lum A, Ong CJ, Krystal G, Mui AL.-F, Andersen RJ. Eur. J. Org. Chem. 2012; 5195
    • 34a Meller J, Feifel SC, Schmiederer T, Zocher R, Sussmuth RD. ChemBioChem 2009; 10: 323
    • 34b Akazome M, Takahashi T, Ogura K. J. Org. Chem. 1999; 64: 2293
    • 34c Germay O, Kumar N, Moore CG, Thomas EJ. Org. Biomol. Chem. 2012; 10: 9709
  • 35 Inanaga J, Hirata K, Saeki H, Yamaguchi M. Bull. Chem. Soc. Jpn. 1979; 52: 1989