Synthesis 2022; 54(06): 1566-1576
DOI: 10.1055/a-1681-4720
feature

Base-Mediated Site-Selective Hydroamination of Alkenes

Ping Li
a   Henan Key Lab of Cable Structure and Materials, College of Cable Engineering, Henan Institute of Technology, Xinxiang, 453003, P. R. of China
b   Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. of China
c   Department of Chemistry, National University of Singapore, 4 Science Drive 2, 117544, Singapore
,
Boon Chong Lee
c   Department of Chemistry, National University of Singapore, 4 Science Drive 2, 117544, Singapore
,
Xiaoxiang Zhang
b   Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. of China
,
Ming Joo Koh
c   Department of Chemistry, National University of Singapore, 4 Science Drive 2, 117544, Singapore
› Institutsangaben
This research was supported by the Ministry of Education of Singapore Academic Research Fund Tier 1 [grant no. R-143-000-B57-114 (M.J.K.)]. We also thank the National University of Singapore for the continued support of our research program.


Abstract

We present a base-mediated hydroamination protocol, using substoichiometric amounts of a hydrosilane and potassium tert-butoxide­, that operates under mild conditions at 30 °C. Many aryl- and heteroatom-substituted olefins as well as arylamines are tolerated, affording the desired products with complete regioselectivity. Preliminary mechanistic investigations reveal a non-radical pathway for hydroamination. A sequential remote hydroamination strategy involving an initial Fe-catalysed olefin isomerisation followed by our base-mediated hydroamination was also developed to directly access β-arylamines from terminal aliphatic alkenes.

Supporting Information



Publikationsverlauf

Eingereicht: 20. September 2021

Angenommen nach Revision: 28. Oktober 2021

Publikationsdatum:
28. Oktober 2021 (online)

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Seayad J, Tillack A, Hartung CG, Beller M. Adv. Synth. Catal. 2002; 344: 795
  • 2 Müller TE, Hultzsch KC, Yus M, Foubelo F, Tada M. Chem. Rev. 2008; 108: 3795
  • 3 Xi Y, Ma S, Hartwig JF. Nature 2020; 588: 254
  • 4 Gurak JA, Yang KS, Liu Z, Engle KM. J. Am. Chem. Soc. 2016; 138: 5805
  • 5 Sengupta M, Das S, Islam SM, Bordoloi A. ChemCatChem 2021; 13: 1089
  • 6 Musacchio AJ, Lainhart BC, Zhang X, Naguib SG, Sherwood TC, Knowles RR. Science 2017; 355: 727
  • 7 Anderson LL, Arnold J, Bergman RG. J. Am. Chem. Soc. 2005; 127: 14542
  • 8 Sommer H, Juliá-Hernández F, Martin R, Marek I. ACS Cent. Sci. 2018; 4: 153
  • 9 Yu X, Zhao H, Li P, Koh MJ. J. Am. Chem. Soc. 2020; 142: 18223
  • 10 Michalson ET, Szmuszkovicz J. Medicinal Agents Incorporating the 1,2-Diamine Functionality . In Progress in Drug Research . Jucker E. Birkhäuser Basel; Basel: 1989: 135-149
  • 11 Vasseur A, Bruffaerts J, Marek I. Nat. Chem. 2016; 8: 209
  • 12 Xiao J, He Y, Ye F, Zhu S. Chem 2018; 4: 1645
  • 13 Palumbo F, Rohrbach S, Tuttle T, Murphy JA. Helv. Chim. Acta 2019; 102: e1900235
  • 14 Toutov AA, Liu WB, Betz KN, Fedorov A, Stoltz BM, Grubbs RH. Nature 2015; 518: 80
  • 15 Jenkins ID, Krenske EH. ACS Omega 2020; 5: 7053
  • 16 Toutov AA, Salata M, Fedorov A, Yang YF, Liang Y, Cariou R, Betz KN, Couzijn EP. A, Shabaker JW, Houk KN, Grubbs RH. Nat. Energy 2017; 2: 4
  • 17 Barham JP, Coulthard G, Emery KJ, Doni E, Cumine F, Nocera G, John MP, Berlouis LE. A, McGuire T, Tuttle T, Murphy JA. J. Am. Chem. Soc. 2016; 138: 7402